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Announcements

» HW?2 posted, milestone due this weds
» HW2 extra credit posted
» updated HW Late policy (see website)
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The singular value decomposition

» Let M be a symmetric matrix.
SVDs also work for asymmetric matrices, with a slightly modified thm.

» SVD theorem: there exists a decomposition of the following form:
M=UDUT

where D is a diagonal matrix and U is an orthogonal matrix (i.e. the columns of
U are unit length and orthogonal to each other).

» The columns of U are eigenvectors of M.
» For PCA, you will take X to be M.
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Projection and Reconstruction: the one dimensional case

> Take out mean u: x; < x; — p
» Find the “top” eigenvector u; of the covariance matrix, with eigenvalue Ay
» What are your projection onto u; (i.e. writing x; in the u; basis)?
(@i - u1)
» What are your reconstructions, X = [X1|X2]| - |§N]T?

T = (UUZ : u1)u1 +u

» What is is your reconstruction error?
1 ~
NZHXZ'—XiHQ =X +... A
i
(also, we if did nothing and projected everything to y, then:

1
NZ|]X¢—M||2:A1+A2+...Ad

so we 'save’ \i in our error.
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Today: how do we efficiently do supervised learning?

“Minimize training-set error rate”:

loss
N

o1
min — Zl{yi(w -x; +b) <0}

b .
=1 .
zero-one loss on a point n

> >

This problem is NP-hard; even for a (multiplicative) , ( )
margin =y = (w * x + b

approximation. PERCEPTRON ALGORITHM: A
model and an algorithm, rolled into one.

Is there a more principled methodology to derive algorithms?
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Relax!

» The mis-classification optimization problem:

N

Hi‘i,n % Z {yi(w-x;) <0}

=1

» Instead, let's try to choose a “reasonable” loss function ¢(y;, w - x) and then try
to solve the relaxation:

1 N
In“i,n N Z;f(yi,w - X;)
P
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What is a good “relaxation”?

> Want that minimizing our surrogate loss helps with minimizing the
mis-classification loss.

» idea: try to use a (sharp) upper bound of the zero-one loss by ¢:
Hy(w-x) <0} < Ly, w-x)

» want our relaxed optimization problem to be easy to solve.
What properties might we want for ¢(-)?

> differentiable? sensitive to changes in w?
> convex?
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The square loss as an upper bound

» We have:
Hy(w-x) <0} < (y — w-x)?

> Easy to see, by plotting:
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A better (convex) upper bound

» The logistic loss:
Elogism(y, w - x) = log (1 + exp(—yw - x)) .

> We have: o
1{y(w-x) < 0} < constant * (1°85U¢(y w . x)

> Again, easy to see, by plotting:
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The square loss! (and linear regression)

» The square loss: £(y,w - x) = (y — w - x)2.
» The relaxed optimization problem:
| X
- 2
min z;(yl —W-X;)
1=

P nice properties:
» for binary classification, it is a an upper bound on the zero-one loss.

» |t makes sense more generally, e.g. if we want to predict real valued y
» We have a convex optimization problem.
» For classification, what is your decision rule using a w?
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Remember this problem?
Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin

18,0 8 307.0 130.0 3504, 12,0 7¢ 1
15,0 8  350.0 165.0 3693, 1.5 78 1

18,0 8 318.0 150.0 3436, 1.0 7¢ 1

16,0 8  304.0 150.0 3433, 12,0 7¢ 1 . :

17.0 8  302.0 140.0 3449, 10.5 70 1 Input: a row in this table.

15,0 8  429.0 198.0 4341, 10.0 7¢ 1

14,0 8 454,09 220.0 4354, 9,0 7¢ 1 ) )

14,0 8  440.0 215.¢ 4312, 8.5 70 1 Goal: predict whether mpg is < 23
14,0 8  455.0 225.0 4425, 10.0 7¢ 1 wp u "
15.0 8 390.0 190.0 3850, 8.5 70 1 ("bad” = 0) or above (“good” =
15.0 8 383.0 170.0 3563. 10.0 70 1 1) given the input row.

14,0 8 340.0 160.0 3609, 8.0 70 1

15,0 8  400.0 150.0 3761, 9.5 70 1

14,0 8 455.0 225.0 3086. 10.0 7¢ 1

24,0 4 113.0 95,00 2372, 15,0 7¢ 3 o

22,0 6 198.0 95.00 2833, 15.5 70 1 Predicting a real y (often)

18,0 6 199.0 97.08 2774, 15,5 78 1

21,0 6 200.0 85,00 2587, 6.0 70 1 makes more sense.

27.0 4 97.00 88.00 2130, 14,5 78 3

26,0 4 97.00 46,00 1835, 20.5 70 2

25,0 4 110.0 87.00 2672, 17.5 78 2

24,0 4 107.0 90.00 2430, 14,5 78 2
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https://archive.ics.uci.edu/ml/datasets/Auto+MPG

Least squares: let's minimize it!

» The optimization problem:

N
E sz—

min ||Y - Xw||2
W

where Y is an N-vector and X is our N x d data matrix.

» How do we interpret Xw?

The solution is the least squares estimator:

wleast squares __ (XTX)leTY
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Vector calculus hints |

> suppose we have a function f(w) =w-c=}; w[jlc[j], where w and c is a
d-dimensional vector.

» Elementary calculus tells gives us scalar derivatives:

of(w) _ .
owli] ]

» The gradient is the vector of all the partial derivatives:

_ (00w) Of(w)  o5w)\T
Vi(w) = <6w[1] T ow(2] T Owld] >

» So we have that:
Vfw)=c
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Vector calculus hints |l
P> suppose we have a function
flw) =w'Mw = wjlwk]M[j,k,
Jk
where M is a symmetric d X d matrix.
» Elementary calculus tells gives us scalar derivatives:

af(g]) _ QZM[i,j]w[j]

ow

» The gradient is just the matrix of all the partial derivatives:

_(0f(w) Af(w)  Of(w)
Vf(w):= (311)[1} Tow(2] T Owld] )

P It is straightforward to see that a far more compact way to write the gradient is:
Vf(w) =2Mw

(just equate each coordinate with the scalar derivative).
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Lots of questions:

» What could go wrong with least squares?

» Suppose we are in “high dimensions”: more dimensions than data points.
» Inductive bias: we need a way to control the complexity of the model.

» Optimization: how do we do this all quickly?
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