
Machine Learning (CSE 446):
(Supervised) Learning as Loss Minimization:

Linear Regression

Sham M Kakade
c© 2019

University of Washington
cse446-staff@cs.washington.edu

0 / 13



Announcements

I HW2 posted, milestone due this weds

I HW2 extra credit posted

I updated HW Late policy (see website)

0 / 13



The singular value decomposition

I Let M be a symmetric matrix.
SVDs also work for asymmetric matrices, with a slightly modified thm.

I SVD theorem: there exists a decomposition of the following form:

M = UDU>

where D is a diagonal matrix and U is an orthogonal matrix (i.e. the columns of
U are unit length and orthogonal to each other).

I The columns of U are eigenvectors of M .

I For PCA, you will take Σ to be M .

1 / 13



Projection and Reconstruction: the one dimensional case
I Take out mean µ: xi ← xi − µ
I Find the “top” eigenvector u1 of the covariance matrix, with eigenvalue λ1
I What are your projection onto u1 (i.e. writing xi in the u1 basis)?

(xi · u1)
I What are your reconstructions, X̂ = [x̂1|x̂2| · · · |x̂N ]>?

x̂i = (xi · u1)u1 + µ

I What is is your reconstruction error?

1

N

∑
i

‖xi − x̂i‖2 = λ2 + . . . λd

(also, we if did nothing and projected everything to µ, then:

1

N

∑
i

‖xi − µ‖2 = λ1 + λ2 + . . . λd

so we ’save’ λ1 in our error.
2 / 13



Today: how do we efficiently do supervised learning?

“Minimize training-set error rate”:

min
w,b

1

N

N∑
i=1

1{yi(w · xi + b) ≤ 0}︸ ︷︷ ︸
zero-one loss on a point n

This problem is NP-hard; even for a (multiplicative)
approximation. Perceptron Algorithm: A
model and an algorithm, rolled into one.

margin = y · (w · x + b)

loss

Is there a more principled methodology to derive algorithms?

3 / 13



Relax!

I The mis-classification optimization problem:

min
w

1

N

N∑
i=1

1{yi(w · xi) ≤ 0}

I Instead, let’s try to choose a “reasonable” loss function `(yi,w · x) and then try
to solve the relaxation:

min
w

1

N

N∑
i=1

`(yi,w · xi)

4 / 13



What is a good “relaxation”?

I Want that minimizing our surrogate loss helps with minimizing the
mis-classification loss.

I idea: try to use a (sharp) upper bound of the zero-one loss by `:

1{y(w · x) ≤ 0} ≤ `(y,w · x)

I want our relaxed optimization problem to be easy to solve.
What properties might we want for `(·)?

I differentiable? sensitive to changes in w?
I convex?

5 / 13



The square loss as an upper bound

I We have:
1{y(w · x) ≤ 0} ≤ (y −w · x)2

I Easy to see, by plotting:

6 / 13



A better (convex) upper bound

I The logistic loss:

`logistic(y,w · x) = log (1 + exp(−yw · x)) .

I We have:
1{y(w · x) ≤ 0} ≤ constant ∗ `logistic(y,w · x)

I Again, easy to see, by plotting:

7 / 13



The square loss! (and linear regression)

I The square loss: `(y,w · x) = (y −w · x)2.

I The relaxed optimization problem:

min
w

1

N

N∑
i=1

(yi −w · xi)
2

I nice properties:
I for binary classification, it is a an upper bound on the zero-one loss.
I It makes sense more generally, e.g. if we want to predict real valued y.
I We have a convex optimization problem.

I For classification, what is your decision rule using a w?

8 / 13



Remember this problem?
Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin

Input: a row in this table.

Goal: predict whether mpg is < 23
(“bad” = 0) or above (“good” =
1) given the input row.

Predicting a real y (often)
makes more sense.

9 / 13

https://archive.ics.uci.edu/ml/datasets/Auto+MPG


Least squares: let’s minimize it!

I The optimization problem:

min
w

1

N

N∑
i=1

(yi −w · xi)
2 =

min
w
‖Y −Xw‖2

where Y is an N -vector and X is our N × d data matrix.

I How do we interpret Xw?

The solution is the least squares estimator:

wleast squares = (X>X)−1X>Y

10 / 13



Vector calculus hints I

I suppose we have a function f(w) = w · c =
∑

j w[j]c[j] , where w and c is a
d-dimensional vector.

I Elementary calculus tells gives us scalar derivatives:

∂f(w)

∂w[i]
= c[i]

I The gradient is the vector of all the partial derivatives:

∇f(w) :=

(
∂f(w)

∂w[1]
,
∂f(w)

∂w[2]
, . . .

∂f(w)

∂w[d]

)>
I So we have that:

∇f(w) = c

11 / 13



Vector calculus hints II
I suppose we have a function

f(w) = w>Mw =
∑
j,k

w[j]w[k]M [j, k] ,

where M is a symmetric d× d matrix.
I Elementary calculus tells gives us scalar derivatives:

∂f(w)

∂w[i]
= 2

∑
j

M [i, j]w[j]

I The gradient is just the matrix of all the partial derivatives:

∇f(w) :=

(
∂f(w)

∂w[1]
,
∂f(w)

∂w[2]
, . . .

∂f(w)

∂w[d]

)
I It is straightforward to see that a far more compact way to write the gradient is:

∇f(w) = 2Mw

(just equate each coordinate with the scalar derivative).
12 / 13



Lots of questions:

I What could go wrong with least squares?
I Suppose we are in “high dimensions”: more dimensions than data points.
I Inductive bias: we need a way to control the complexity of the model.

I Optimization: how do we do this all quickly?

13 / 13


