Machine Learning (CSE 446): (Supervised) Learning as Loss Minimization: Linear Regression

Sham M Kakade © 2019

University of Washington cse446-staff@cs.washington.edu

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < 0 < 0</p>

Announcements

- ► HW2 posted, milestone due this weds
- HW2 extra credit posted
- updated HW Late policy (see website)

The singular value decomposition

• Let *M* be a symmetric matrix.

SVDs also work for asymmetric matrices, with a slightly modified thm.

► SVD theorem: there exists a decomposition of the following form:

 $M = U D U^{\top}$

where D is a diagonal matrix and U is an orthogonal matrix (i.e. the columns of U are unit length and orthogonal to each other).

- The columns of U are eigenvectors of M.
- For PCA, you will take Σ to be M.

Projection and Reconstruction: the one dimensional case

• Take out mean
$$\mu$$
: $x_i \leftarrow x_i - \mu$

Find the "top" eigenvector u_1 of the covariance matrix, with eigenvalue λ_1

• What are your projection onto u_1 (i.e. writing x_i in the u_1 basis)?

$$(x_i \cdot u_1)$$

What are your reconstructions, $\widehat{\mathbf{X}} = [\widehat{\mathbf{x}}_1 | \widehat{\mathbf{x}}_2 | \cdots | \widehat{\mathbf{x}}_N]^\top \widehat{\mathbf{x}}_i$
 $\widehat{x}_i = (x_i \cdot u_1)u_1 + \mu$

What is is your reconstruction error?

$$\frac{1}{N}\sum_{i} \|\mathbf{x}_{i} - \widehat{\mathbf{x}}_{i}\|^{2} = \lambda_{2} + \dots \lambda_{d}$$

(also, we if did nothing and projected everything to μ , then:

$$\frac{1}{N}\sum_{i} \|\mathbf{x}_{i} - \mu\|^{2} = \lambda_{1} + \lambda_{2} + \dots \lambda_{d}$$

so we 'save' λ_1 in our error.

・ロ・・日・・川・・日・・日・

Today: how do we efficiently do supervised learning?

"Minimize training-set error rate":

$$\min_{\mathbf{w},b} \frac{1}{N} \sum_{i=1}^{N} \underbrace{\mathbf{1}\{y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \le 0\}}_{\text{zero-one loss on a point } n}$$

This problem is NP-hard; even for a (multiplicative) approximation. PERCEPTRON ALGORITHM: A model and an algorithm, rolled into one.

Is there a more principled methodology to derive algorithms?

Relax!

► The mis-classification optimization problem:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} \mathbf{1} \{ y_i(\mathbf{w} \cdot \mathbf{x}_i) \le 0 \}$$

▶ Instead, let's try to choose a "reasonable" loss function $\ell(y_i, \mathbf{w} \cdot \mathbf{x})$ and then try to solve the **relaxation**:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, \mathbf{w} \cdot \mathbf{x}_i)$$

What is a good "relaxation"?

- Want that minimizing our surrogate loss helps with minimizing the mis-classification loss.
 - idea: try to use a (sharp) upper bound of the zero-one loss by ℓ :

 $\mathbf{1}\{y(\mathbf{w}\cdot\mathbf{x})\leq 0\}\leq \ell(y,\mathbf{w}\cdot\mathbf{x})$

- ► want our relaxed optimization problem to be easy to solve. What properties might we want for l(·)?
 - differentiable? sensitive to changes in w?
 - convex?

The square loss as an upper bound

► We have:

$$\mathbf{1}\{y(\mathbf{w}\cdot\mathbf{x})\leq 0\}\leq (y-\mathbf{w}\cdot\mathbf{x})^2$$

Easy to see, by plotting:

A better (convex) upper bound

► The logistic loss:

$$\ell^{\text{logistic}}(y, \mathbf{w} \cdot \mathbf{x}) = \log (1 + \exp(-y\mathbf{w} \cdot \mathbf{x})).$$

We have:

$$\mathbf{1}\{y(\mathbf{w} \cdot \mathbf{x}) \le 0\} \le \text{constant} * \ell^{\text{logistic}}(y, \mathbf{w} \cdot \mathbf{x})$$

► Again, easy to see, by plotting:

The square loss! (and linear regression)

- The square loss: $\ell(y, \mathbf{w} \cdot \mathbf{x}) = (y \mathbf{w} \cdot \mathbf{x})^2$.
- The relaxed optimization problem:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

- nice properties:
 - for binary classification, it is a an upper bound on the zero-one loss.
 - lt makes sense more generally, e.g. if we want to predict real valued y.
 - We have a convex optimization problem.
- ▶ For classification, what is your decision rule using a w?

Remember this problem?

Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin							
18.0	8	307.0	130.0	3504.	12.0	70	1
15.0	8	350.0	165.0	3693.	11.5	70	1
18.0	8	318.0	150.0	3436.	11.0	70	1
16.0	8	304.0	150.0	3433.	12.0	70	1
17.0	8	302.0	140.0	3449.	10.5	70	1
15.0	8	429.0	198.0	4341.	10.0	70	1
14.0	8	454.0	220.0	4354.	9.0	70	1
14.0	8	440.0	215.0	4312.	8.5	70	1
14.0	8	455.0	225.0	4425.	10.0	70	1
15.0	8	390.0	190.0	3850.	8.5	70	1
15.0	8	383.0	170.0	3563.	10.0	70	1
14.0	8	340.0	160.0	3609.	8.0	70	1
15.0	8	400.0	150.0	3761.	9.5	70	1
14.0	8	455.0	225.0	3086.	10.0	70	1
24.0	4	113.0	95.00	2372.	15.0	70	3
22.0	6	198.0	95.00	2833.	15.5	70	1
18.0	6	199.0	97.00	2774.	15.5	70	1
21.0	6	200.0	85.00	2587.	16.0	70	1
27.0	4	97.00	88.00	2130.	14.5	70	3
26.0	4	97.00	46.00	1835.	20.5	70	2
25.0	4	110.0	87.00	2672.	17.5	70	2
24.0	4	107.0	90.00	2430.	14.5	70	2

Input: a row in this table.

Goal: predict whether mpg is < 23("bad" = 0) or above ("good" =1) given the input row.

Predicting a real y (often) makes more sense.

Least squares: let's minimize it!

► The optimization problem:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 = \\\min_{\mathbf{w}} \|Y - X\mathbf{w}\|^2$$

where Y is an N-vector and X is our $N \times d$ data matrix.

• How do we interpret Xw?

The solution is the least squares estimator:

$$\mathbf{w}^{\text{least squares}} = (X^{\top}X)^{-1}X^{\top}Y$$

Vector calculus hints I

- suppose we have a function $f(w) = w \cdot c = \sum_j w[j]c[j]$, where w and c is a d-dimensional vector.
- Elementary calculus tells gives us scalar derivatives:

$$\frac{\partial f(w)}{\partial w[i]} = c[i]$$

▶ The gradient is the vector of all the partial derivatives:

$$\nabla f(w) := \left(\frac{\partial f(w)}{\partial w[1]}, \frac{\partial f(w)}{\partial w[2]}, \dots, \frac{\partial f(w)}{\partial w[d]}\right)^{\top}$$

So we have that:

$$\nabla f(w) = c$$

Vector calculus hints II

suppose we have a function

$$f(w) = w^{\top} M w = \sum_{j,k} w[j]w[k]M[j,k] \,,$$

where M is a symmetric $d\times d$ matrix.

Elementary calculus tells gives us scalar derivatives:

$$\frac{\partial f(w)}{\partial w[i]} = 2\sum_{j} M[i,j]w[j]$$

The gradient is just the matrix of all the partial derivatives:

$$\nabla f(w) := \left(\frac{\partial f(w)}{\partial w[1]}, \frac{\partial f(w)}{\partial w[2]}, \dots \frac{\partial f(w)}{\partial w[d]}\right)$$

▶ It is straightforward to see that a far more compact way to write the gradient is:

$$\nabla f(w) = 2Mw$$

(just equate each coordinate with the scalar derivative).

・ロ・・ 日・ ・ 日・ ・ 日・

Lots of questions:

- What could go wrong with least squares?
 - Suppose we are in "high dimensions": more dimensions than data points.
 - Inductive bias: we need a way to control the complexity of the model.
- Optimization: how do we do this all quickly?