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The Perceptron Convergence Theorem

I Again taking b = 0 (absorbing it into w).

I Margin def: Suppose the data are linearly separable, and all data points are γ away
from the separating hyperplane. Precisely, there exists a w∗, which we can assume
to be of unit norm (without loss of generality), such that for all (x, y) ∈ D.

y (w∗ · x) ≥ γ

γ is the margin.

Theorem: (Novikoff, 1962) Suppose the inputs bounded such that ‖x‖ ≤ R. Assume
our data D is linearly separable with margin γ. Then the perceptron algorithm will
make at most R2

γ2
mistakes.

(This implies that at most O(N
γ2
) updates, after which time wt never changes. )
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Proof of the “Mistake Lemma”
I Let Mt be the number of mistakes at time t.

If we make a mistake using wt on (x, y), then observe that ywt · x ≤ 0.
I Suppose we make a mistake at time t:

w∗ · wt = w∗ · (wt−1 + yx) = w∗ · wt−1 + yw∗ · x ≥ w∗ · wt−1 + γ .

Since w0 = 0 and w∗ · wt grows by γ every time we make a mistake, this implies
that w∗ · wt ≥ γMt.

I Also, if we make a mistake at time t (using that ywt · x ≤ 0),

‖wt‖2 = ‖wt−1‖2 + 2ywt−1 · x+ ||x||2 ≤ ‖wt−1‖2 + 0 + ||x||2 ≤ ‖wt−1‖2 +R2 .

Since ‖wt‖2 grows by R2 on every mistake, this implies ‖wt‖2 ≤ R2Mt and so
‖wt‖ ≤ R

√
Mt.

I Now we have that:

γMt ≤ w∗ · wt ≤ ‖w∗‖‖wt‖ ≤ R
√
Mt .

solving for Mt completes the proof.
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Today: Unsupervised Learning and the K-means algorithm

I The Our dataset consists only of inputs: {x1, . . . xN}.
Suppose we do not have labels.

I Simple objective: cluster into K groups.
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

The stars are cluster centers,
randomly assigned at first.
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Assign each example to its nearest
cluster center.
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Recalculate cluster centers to
reflect their respective examples.
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

At this point, nothing will change;
we have converged.
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

At this point, nothing will change;
we have converged.

1. Does it always converge?
Yes.

2. Does it converge to the
“right” answer?
Not necessarily.
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K-Means Clustering
Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: cluster assignment zn for each xn
initialize each µk to a random location, for k ∈ {1, . . . ,K};
do

for n ∈ {1, . . . , N} do
# assign each data point to its nearest cluster-center let
zn = argmink ‖µk − xn‖;

end
for k ∈ {1, . . . ,K} do

# recenter each cluster
let Xk = {xn | zn = k};
let µk = mean(Xk);

end

while any zn changes from previous iteration;
return {zn}Nn=1;

Algorithm 1: K-Means
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What would we like to do?

I Objective function: find k-means, µ1, . . . µk, which minimizes the following
squared distance cost function:

N∑
n=1

(
min

k′∈{1,...,k−1}
‖xn − µk′‖2

)
I We can also write this objective function in terms of the assignments zn’s. How?

This is the general approach of loss function minimization: find parameters which
make our objection function “small” (and which also “generalizes”)
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Convergence Proof Sketch

I The cluster assignments, the zn’s take only finitely many values. So the cluster
centers, the µk’s, also must only take a finite number of values. Each time we
update any of them, we will never increase this function:

L(z1, . . . , zN ,µ1, . . . ,µK) =

N∑
n=1

∥∥xn − µzn∥∥2 ≥ 0

L is the objective function of K-Means clustering.

I Convergence must occur in a finite number of steps, due to:
L decreases at every step; L can only take on finitely many values.
See CIML, Chapter 15 for more details.

I Does the solution depend on the random initialization of the means µ∗?
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Does K-means converge to the minimal cost solution?

I No! The objective is an NP-Hard problem, so we can’t expect any algorithm to
minimize the cost without essentially checking (near to) all assignments.

I Bad example for K-means:
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