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The Perceptron Convergence Theorem

» Again taking b = 0 (absorbing it into w).

» Margin def: Suppose the data are linearly separable, and all data points are v away
from the separating hyperplane. Precisely, there exists a w,, which we can assume
to be of unit norm (without loss of generality), such that for all (z,y) € D.

y(ws ) >y

v is the margin.

Theorem: (Novikoff, 1962) Suppose the inputs bounded such that ||z| < R. Assume
our data D is Iir12early separable with margin . Then the perceptron algorithm will
make at most % mistakes.

(This implies that at most O(%) updates, after which time w; never changes. )
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Proof of the “Mistake Lemma”

» Let M; be the number of mistakes at time ¢.
If we make a mistake using w; on (z,y), then observe that yw; - = < 0.
» Suppose we make a mistake at time :

Wy - Wy = Wy - (W1 + YT) = Wy - W1 + YWy - T > Wy - Wy—1 + 7 .

Since wy = 0 and w, - wy grows by 7 every time we make a mistake, this implies
that Wk * Wt Z ’)/Mt
» Also, if we make a mistake at time ¢ (using that yw; - = < 0),

lwel? = fwerl* + 2ywe-r - @ + ||2]* < Jwer|[* + 0+ [Ja]|* < [Jwe-1]? + B?.

Since |lw||? grows by R? on every mistake, this implies |lw;||? < R?M; and so

||we|| < R/ M.

» Now we have that:
VM, < w, - wp < Jwlwe]| < R/

solving for M, completes the proof.
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Today: Unsupervised Learning and the K-means algorithm

» The Our dataset consists only of inputs: {z1,...zxN}.
Suppose we do not have labels.

» Simple objective: cluster into K groups.
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K-Means: An lterative Clustering Algorithm

(Review from last week.)
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K-Means: An lterative Clustering Algorithm

(Review from last week.)

The stars are cluster centers,
randomly assigned at first.
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K-Means: An lterative Clustering Algorithm

(Review from last week.)

Assign each example to its nearest
cluster center.
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K-Means: An lterative Clustering Algorithm

(Review from last week.)

Recalculate cluster centers to

reflect their respective examples.
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K-Means: An lterative Clustering Algorithm

(Review from last week.)

At this point, nothing will change;
we have converged.
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K-Means: An lterative Clustering Algorithm

(Review from last week.)

At this point, nothing will change;
we have converged.

1. Does it always converge?
Yes.

2. Does it converge to the
“right” answer?
Not necessarily.
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K-Means Clustering

Data: unlabeled data D = <Xn>7];]:11 number of clusters K

Result: cluster assignment z,, for each x,,

initialize each p;, to a random location, for k € {1,..., K},

do

fornec{l,...,N} do

# assign each data point to its nearest cluster-center let
zn, = argminy, ||y, — Xn|;

end

orke{l,...,K} do

7 recenter each cluster

let Xy = {x, | zn = k};

let pj, = mean(Xy);

-

end

while any z,, changes from previous iteration;

return {2, }2_;;

Algorithm 1: K-MEANS



What would we like to do?

» Objective function: find k-means, p1, ...y, which minimizes the following
squared distance cost function:

N
- 2
min Xn — /
Z (k’e{l,...,k—l} n = b )

n=1

> \We can also write this objective function in terms of the assignments z,'s. How?

This is the general approach of loss function minimization: find parameters which
make our objection function “small” (and which also “generalizes")
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Convergence Proof Sketch

» The cluster assignments, the z,'s take only finitely many values. So the cluster
centers, the p;'s, also must only take a finite number of values. Each time we
update any of them, we will never increase this function:

2>0

N
L(Zla"'vaalJ’lv"'vl'l’K):ZHXTL_H’Z”
n=1

L is the objective function of K-Means clustering.

» Convergence must occur in a finite number of steps, due to:
L decreases at every step; L can only take on finitely many values.
See CIML, Chapter 15 for more details.

» Does the solution depend on the random initialization of the means p,?
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Does K-means converge to the minimal cost solution?

» No! The objective is an NP-Hard problem, so we can't expect any algorithm to
minimize the cost without essentially checking (near to) all assignments.

> Bad example for K-means:
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