Machine Learning (CSE 446):
Unsupervised Learning: The K-means Algorithm

Sham M Kakade
© 2019

University of Washington
cse446-staff@cs.washington.edu
The Perceptron Convergence Theorem

- Again taking $b = 0$ (absorbing it into w).
- Margin def: Suppose the data are linearly separable, and all data points are γ away from the separating hyperplane. Precisely, there exists a w_*, which we can assume to be of unit norm (without loss of generality), such that for all $(x, y) \in D$.

$$y (w_* \cdot x) \geq \gamma$$

γ is the margin.

Theorem: (Novikoff, 1962) Suppose the inputs bounded such that $\|x\| \leq R$. Assume our data D is linearly separable with margin γ. Then the perceptron algorithm will make at most $\frac{R^2}{\gamma^2}$ mistakes.

(This implies that at most $O\left(\frac{N}{\gamma^2}\right)$ updates, after which time w_t never changes.)
Proof of the “Mistake Lemma”

Let M_t be the number of mistakes at time t.
If we make a mistake using w_t on (x, y), then observe that $yw_t \cdot x \leq 0$.

Suppose we make a mistake at time t:

$$w_\ast \cdot w_t = w_\ast \cdot (w_{t-1} + yx) = w_\ast \cdot w_{t-1} + yw_\ast \cdot x \geq w_\ast \cdot w_{t-1} + \gamma.$$

Since $w_0 = 0$ and $w_\ast \cdot w_t$ grows by γ every time we make a mistake, this implies that $w_\ast \cdot w_t \geq \gamma M_t$.

Also, if we make a mistake at time t (using that $yw_t \cdot x \leq 0$),

$$\|w_t\|^2 = \|w_{t-1}\|^2 + 2yw_{t-1} \cdot x + \|x\|^2 \leq \|w_{t-1}\|^2 + 0 + \|x\|^2 \leq \|w_{t-1}\|^2 + R^2.$$

Since $\|w_t\|^2$ grows by R^2 on every mistake, this implies $\|w_t\|^2 \leq R^2 M_t$ and so $\|w_t\| \leq R\sqrt{M_t}$.

Now we have that:

$$\gamma M_t \leq w_\ast \cdot w_t \leq \|w_\ast\|\|w_t\| \leq R\sqrt{M_t}.$$

solving for M_t completes the proof.
Today: Unsupervised Learning and the K-means algorithm

- The dataset consists only of inputs: $\{x_1, \ldots, x_N\}$. Suppose we do not have labels.
- Simple objective: cluster into K groups.
K-Means: An Iterative Clustering Algorithm

(Review from last week.)
The stars are cluster centers, randomly assigned at first.
K-Means: An Iterative Clustering Algorithm

(Review from last week.)

Assign each example to its nearest cluster center.
Recalculate cluster centers to reflect their respective examples.
Assign each example to its nearest cluster center.
Recalculate cluster centers to reflect their respective examples.
Assign each example to its nearest cluster center.
Recalculate cluster centers to reflect their respective examples.
At this point, nothing will change; we have converged.
At this point, nothing will change; we have converged.

1. Does it always converge? Yes.
2. Does it converge to the “right” answer? Not necessarily.
K-Means Clustering

Data: unlabeled data $D = \langle x_n \rangle_{n=1}^N$, number of clusters K

Result: cluster assignment z_n for each x_n

initialize each μ_k to a random location, for $k \in \{1, \ldots, K\}$;

do
 for $n \in \{1, \ldots, N\}$ do
 # assign each data point to its nearest cluster-center let
 $z_n = \text{argmin}_k \| \mu_k - x_n \|$
 end
 for $k \in \{1, \ldots, K\}$ do
 # recenter each cluster
 let $X_k = \{x_n \mid z_n = k\}$;
 let $\mu_k = \text{mean}(X_k)$;
 end
while any z_n changes from previous iteration;
return $\{z_n\}_{n=1}^N$;

Algorithm 1: K-Means
What would we like to do?

- **Objective function:** find k-means, $\mu_1, \ldots \mu_k$, which minimizes the following squared distance cost function:

$$
\sum_{n=1}^{N} \left(\min_{k' \in \{1, \ldots, k-1\}} \| x_n - \mu_{k'} \|^2 \right)
$$

- We can also write this objective function in terms of the assignments z_n's. How?

This is the general approach of loss function minimization: find parameters which make our objection function “small” (and which also “generalizes”)

Convergence Proof Sketch

- The cluster assignments, the z_n's take only finitely many values. So the cluster centers, the μ_k's, also must only take a finite number of values. Each time we update any of them, we will never increase this function:

$$L(z_1, \ldots, z_N, \mu_1, \ldots, \mu_K) = \sum_{n=1}^{N} \| x_n - \mu_{z_n} \|^2 \geq 0$$

L is the objective function of K-Means clustering.

- Convergence must occur in a finite number of steps, due to:
 L decreases at every step; L can only take on finitely many values.
 See CIML, Chapter 15 for more details.

- Does the solution depend on the random initialization of the means μ_*?
Does K-means converge to the minimal cost solution?

- No! The objective is an NP-Hard problem, so we can’t expect any algorithm to minimize the cost without essentially checking (near to) all assignments.
- Bad example for K-means:
References I