
CSE 446: Machine Learning Lecture

The Expectation-Maximization (EM) Algorithm

Instructor: Sham Kakade

1 The EM algorithm: the general case.

The EM algorithm [1] is a general procedure to estimate the parameters in a model with latent (unobserved) factors.
EM improves the log likelihood function at every step and will converge. However, it may not converge to the global
optima. Think of it as a more general (and probabilistic) adaptation of the K-means algorithm.

Let x1, . . . xN be all our data. Let h1, . . . hN be the unobserved (“hidden”) variables (we do not observe these).
We suppose we have a model which specifies the distribution Pr(x, h), and we assume that each (xi, hi) is sampled
independently (and we do not observe the hi’s).

The maximum likelihood estimation problem is:

argmax
θ

N∑
n=1

log Pr(xn|θ) .

Note that
Pr(xn|θ) =

∑
h

Pr(xn, hn = h|θ)

where the sum is over all the unobserved variables. Using this, we have that the optimization problem is:

argmax
θ

N∑
n=1

log
∑
h

Pr(xn, hn = h|θ) .

which shows how the log likelihood function depends on the parameters θ.

Initialization. Initialize the parameters to some θ. Then alternate between the E-step and the M-step below.

The E step. Compute the posterior distribution of hn given the xn’s, for our given parameter. For every n and every
possible value of h, set:

zn(h) = Pr(hn = h|xn, θ)

The M step Set the new parameters as the solution of the following optimization problem:

θ ← argminθ′
∑
n

∑
h

zn(h) log Pr(xn, hn = h|θ)

Remark: the key is that in many natural models, this M-step is very easy to solve for in closed form, similar to the case
of the mixture of Gaussians problem.
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1.1 Convergence

For a general class of latent variable models — models which have unobserved random variables — we can say EM
only increases the value of the objective function until a local minima (or a saddle point) is reached. To be precise, we
have that:

Lemma 1.1. Let θ be the parameter at the start of an iteration and let θ′ be parameter at the end of the iteration. We
have that:

log Pr(x1, . . . xN |θ′) ≥ log Pr(x1, . . . xN |θ)

1.2 (local) Convergence

• If the algorithm has not converged, then, after every M step, the negative log likelihood function decreases in
value.

• The algorithm will converge in the limit (to some point, under mild assumptions). Unfortunately, this point
may not be the global minima. This is related to the that the log likelihood objective function (for these latent
variable models) is typically not convex.

2 Another example: the problem of document clustering/topic modeling

Suppose we have N documents x1, . . . xn. Each document is is of length T , and we only keep track of the word count
in each document. Let us say Count(n)(w) is the number of times word w appeared in the n-th document.

We are interested in a “soft” grouping of the documents along with estimating a model for document generation. Let
us start with a simple model.

3 A generative model for documents

For a moment, put aside the document clustering problem. Let us instead posit a (probabilistic) procedure which
underlies how our documents were generated.

3.1 “Bag of words” model: a (single) topic model

Random variables: a “hidden” (or latent topic) i ∈ {1 . . . k} and T -word outcomesw1, w2, . . . wT which take on some
discrete values (these T outcomes constitute a document).

Parameters: the mixing weights πi = Pr(topic = i), the topics bwi = Pr(word = w|topic = i)

The generative model for a T -word document, where every document is only about one topic, is specified as follows:

1. sample a topic i, which has probability πi

2. gererate T words w1, w2, . . . wT , independently. in particular, we choose word wt as the t-th word with proba-
bility bwti.

Note this generative model ignores the word order, so it is not a particularly faithful generative model.
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The conditional independencies implied by the generative procedure imply that we can write the joint probability of
the outcome topic i occurring with a document containing the words w1, w2, . . . wT as:

Pr(topic = i and w1, w2, . . . wT ) = Pr(topic = i) Pr(w1, w2, . . . wT |topic = i)

= Pr(topic = i) Pr(w1|topic = i) Pr(w2|topic = i) Pr(wT |topic = i)

= πibw1ibw2i . . . bwT i

where the second to last step follows due to the fact that the words are generated independently given the topic i.

Inference

Suppose we were given a document with w1, w2, . . . wT . One inference question would be: what is the probability the
underlying topic is i? By Bayes rule, we have:

Pr(topic = i|w1, w2, . . . wT ) =
1

Pr(w1, w2, . . . wT )
Pr(topic = i and w1, w2, . . . wT )

=
1

Z
πibw1ibw2i . . . bwT i

where Z is a number chosen so that the probabilities sum to 1. Critically, note that Z is not a function of i.

3.2 Back to our topic modeling/document clustering problem:
Maximum Likelihood estimation

Given the N documents, we could estimate the parameters as follows:

b̂, π̂ = argmax
b,π

log Pr(x1, . . . xn|b, π)

How can we do this efficiently?

4 Another EM example: the topic modeling case

The EM algorithm is an alternating minimization algorithm. We start at some initialization and then alternate between
the E and M steps as follows:

Initialization. Initialize with some b̂ and π̂ (which is not symmetric os that the topic vector are all not identical).

The E step. Estimate the posterior probabilities, i.e. the soft assignments, of each document:

P̂ r(topic i|xn) =
1

Z
π̂i b̂w1i b̂w2i . . . b̂wT i

The M step. Note that Count(n)(w)/T is the empirical frequency of word w in the n-th document.
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Given the posterior probabilities (which we can view as “soft” assignments), we go back and re-estimate the topic
probabilities and the mixing weights as follows

b̂wi =

∑N
n=1 P̂ r(topic i|xn) Count(n)(w)/T∑N

n=1 P̂ r(topic i|xn)

and

π̂i =
1

N

N∑
n=1

P̂ r(topic i|xn)

Now got back to the E-step.
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