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Announcements

» Piazza: If you did not get an email, send us a message.
Announcements will be made there, so make sure you can see them posted.

» Gradescope:
» USE YOUR UW ID NUMBER WHEN YOU SIGN UP.

we need to match your assignments to you.
» The course code is: 9JKZ4G.

» HWO posted/Turn in Certification file that you read the website.

» TA office hours posted.
(Please check website before you go, just in case of changes.)

» Midterm date: Mon, Feb 11.

Qz section this week.

v

» Today: an example, Decision Trees
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The “i.i.d.” Supervised Learning Setup

» Let ¢ be a loss function; /(y,7) is our loss by predicting ¢ when y is the correct
output.

» Let D(x,y) define the (unknown) underlying probability of input/output pair
(z,y), in “nature.”

» The training data D = ((x1,v1), (x2,¥2), ..., (TN, yn)) are assumed to be
identical, independently, distributed (i.i.d.) samples from D.

» We care about our expected error (i.e. the expected loss, the “true”
expected loss, ...) with regards to the underlying distribution D.

» Goal: find a hypothesis which as has “low” expected error, using the training set.

3/16



The loss

» Fix a classifier f on (x,y), the “0/1 loss" is:

Ky # f(x)}

» Classifier f's true expected loss:

«(f) =) Dy Uy # f(2)} = E[L{y # f(2)}]

(z,y)

» Classifier f's average loss on training data:

1 N
) =5 D Ui # flai)}
=1

4/16



A Toy Data Set

Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin
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Input: a row in this table;
“features” are columns.

Goal: predict whether mpg is < 23

(“bad” = 0) or above (“good” =
1) given other attributes (other
columns).

201 “good” and 197 “bad”;
guessing the most frequent class
(good) will get 50.5% accuracy.
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https://archive.ics.uci.edu/ml/datasets/Auto+MPG

Let's build a classifier!

> Let's just try to build a classifier “by hand”.
(This is our first learning algorithm.)

» For now, let’s ignore the true loss/trying to “generalize”

> Let's start with just looking at a simple classifier.
What is a simple classification rule?

» Conceptual point: Let ®(z) = (¢p1(z), p2(x), . .. pg(z)) be a function that maps
from inputs x to a vector of values. Each component function ¢(x) = ¢;(x) could
be:

> If ¢ maps to {0,1}, we call it a “binary feature (function)
> If ¢ maps to R, we call it a “real-valued feature (function)
» ¢ could map to categorical values, integers, ...

”

”

Sometimes we write ®(z) to refer to a vector of features of x.
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Contingency Table

values of y

values of feature ¢
/1}1 ’l}2 DY UK
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Decision Stump Example

maker
y america europe asia
174 14 9
1 75 56 70
\: \ 2

0 1 1
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Decision Stump Example

root

197:201

america
174:75

europe
14:56

maker
Y| america europe asia
174 14 9
1 75 56 70
3 X 1
0 1 1
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Decision Stump Example

maker
Y| america europe asia
174 14 9
1 75 56 70
3 \ 1
0 1 1

Errors: 75 + 14 + 9 = 98

(about 25%)

root

197:201

america
174:75

europe
14:56
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Decision Stump Example

3:1

root
197:201

<G>

20:184

1:2

73:11

100:3
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Decision Stump Example

root

197:201

Errors: 1+ 20+ 1+ 11 +3 =136 (about 9%)
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Key ldea: Recursion

A single feature partitions the data.

For each partition, we could choose another feature and partition further.

Applying this recursively, we can construct a decision tree.
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Decision Tree Example

root

197:201

america
7:65

europe
10:53

Error reduction compared to the cylinders stump? "



Decision Tree Example

root

197:201

america
67:7

europe
3:1

Error reduction compared to the cylinders stump? "



Decision Tree Example

root

197:201

0
73:1

Error reduction compared to the cylinders stump? "



Decision Tree Example

root

197:201

Error reduction compared to the cylinders stump? 11/16



Decision Tree: Making a Prediction

root
n:p
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nl:pl
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1
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Decision Tree: Making a Prediction

root
n:p

<>

IWOIDO

nl:pl

"10°P10

M11°P11

<>

<>

0
"100°P100

1

"101°P101

0

"110°P110

1
M111°P111

Data: decision tree t, input example x

Result: predicted class

if ¢ has the form LEAF(y) then

‘ return v,

else
# t.¢ is the feature associated with ¢;
# t.child(v) is the subtree for value v;
return DTREETEST(¢.child(t.¢(x)), z));

end
Algorithm 1: DTREETEST
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Decision Tree: Making a Prediction

root

0 Equivalent boolean formulas:
— llpl (1 =0) = [no < po]
(p1 =1) A (92 =0) A (¢3 =0) = [n100 < P10o]
(¢1=1)A(¢2=0) A (g3 =1) = [n101 < p1o1]
0 1 (01 =1) A (2 =1) A(¢s =0) = [n110 < p110]
e R (1 =1 A(p2=1)A(¢a=1) = [n111 < p111]
G

"100°P100 || "101°P101 || "110°P110 || "111°P111
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Tangent: How Many Formulas?

» Assume we have D binary features.
» Each feature could be set to 0, or set to 1, or excluded (wildcard/don’t care).

» 3D formulas.
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Building a Decision Tree

root
n:p

14/16



Building a Decision Tree

root
n:p

<>

0
np:Pg

1
ni:pq

We chose feature ¢1. Note that n = ng + ny and p = pg + p1.
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Building a Decision Tree

root
n:p

<>

0
np:Pg

1
ni:pq

We chose not to split the left partition. Why not?
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Building a Decision Tree

root
n:p

HOZpO

Hlipl

"10°P10

o

M11°P11
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Building a Decision Tree

root

n:p

HOZDO

M11°P11

0
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1
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Building a Decision Tree

root

n:p
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ﬂl:pl
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Greedily Building a Decision Tree (Binary Features)
Data: data D, feature set ¢
Result: decision tree
if all examples in D have the same label y, or ® is empty and vy is the best guess
then
return LEAF(y);
else
for each feature ¢ in ® do
partition D into Dy and D; based on ¢-values;
let mistakes(¢) = (non-majority answers in Dy) + (non-majority answers in
Dy);
end
let ¢* be the feature with the smallest number of mistakes;
return NODE(¢*, {0 — DTREETRAIN(Dy, @ \ {¢*}), 1 —
DTREETRAIN(Dy, @\ {¢*})});

end
Algorithm 2: DTREETRAIN
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What could go wrong?

» Next class!
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