
CSE 446: Machine Learning Lecture

Auto-Differentiation and Computation Graphs

Instructor: Sham Kakade

1 Auto-Differentiation (AD) in applied ML

The ability to automatically differentiate functions has recently become a core ML tool, providing us with ability to
experiment with much richer models in the development cycle. One impressive (and remarkable!) mathematical result
is that we can compute all of the partial derivatives of a function with (nearly) same computational runtime (within a
factor of 5) of the function itself [Griewank(1989), Baur and Strassen(1983)].

Understanding the details of how auto-diff works is an important component in our ability to better utilize software
like PyTorch, TensorFlow, etc...

2 The Computational Model

Suppose we seek to compute the derivative with respect to a real valued function f(w) : Rd → R, i.e we seek to
compute ∇wf(w). The critical question: what is the time complexity of computing this derivative, particularly in the
case where d is large?

First, let us state how specify the function f through a program. This model is (essentially) the algebraic complexity
model.

2.1 An example

(This example is adapted from [Griewank and Walther(2008)]).

Let us start with an example: suppose we are interested in computing the function:

f(w1, w2) = (sin(2πw1/w2) + 3w1/w2 − exp(2w2)) ∗ (3w1/w2 − exp(2w2))

Let us now state a program which computes our function f .

input: z0 = (w1, w2)

1. z1 = w1/w2

2. z2 = sin(2πz1)

3. z3 = exp(2w2)

4. z4 = 3z1 − z3

5. z5 = z2 + z4

1



Figure 1: Computational graph of our example.

6. z6 = z4z5

return: z6

Our “program” is sometimes referred to as an evaluation trace, when written in this manner. The computation graph
is the flow of operations. Figure 1 shows this graph for our example; here z1 points to z2 and z4; z2 points to z5; z4
points to z5 and z6; etc. We say that z2 and z4 and children of z1; z5 is a child of z2; etc.

2.2 The computation graph and evaluation traces

Now let us specify the model more abstractly. Suppose we have access to a set of differentiable real value functions
h ∈ H.

The computational model is one where we use our functions in H to create intermediate variables. Specifically, our
evaluation trace will be of the form:

In our computational model, all intermediate variables z1, . . . zt will be scalars; each of the variables correspond to a
node. Only the input z0 = w will be a vector, and this input will be represented with d-nodes [z0]1 = w1, [z0]2 =
w2, . . . [z0]3 = wd in our graph.

input: z0 = w. We actually have d (scalar) input nodes where [z0]1 = w1, [z0]2 = w2, . . . [z0]3 = wd.

1. z1 = h1(a fixed subset of the parent variables in w)
. . .

t. zt = ht(a fixed a subset of the parent variables in z1:t−1, w)
. . .

T. zT = hT (a fixed a subset of the parent variables in z1:T−1, w)

return: zT .

Let us say every h ∈ H is one of the following:

1. an affine transformation of the inputs (e.g. step 4 in our example)

2. a product of variables, to some power (e.g. step 1, step 6 in our example. we could also have z8 = z41 ∗ z75z−16 ).

2



3. h could lie in some fixed set of one dimensional differentiable functions. Examples include sin(·), cos(·),
exp(·), log(·), etc. Implicitly, we are assuming that we can “easily” compute the derivatives for each of these
one dimensional functions h (we specify this precisely later on). For example, we could have z8 = sin(2z3).
We do not allow z8 = sin(2z3 +7z5 + z6); for the latter, we would have to create another intermediate variable
for 2z3 + 7z5 + z6. This restriction is to make our computations as efficient as possible.

Remark: We don’t really need the functions of type 3. In a very real sense, all our transcendental functions like sin(·),
cos(·), exp(·), log(·), etc. are all implemented (in code) through using functions of type 1 and 2, e.g. when you call
the sin(·) function, it is computed through a polynomial.

Relation to Backprop and a Neural Net: In the special case of neural nets, note that our computation graph should
not be thought of as being the same as the neural net graph. With regards to the computation graph, the input nodes are
w. In a neural net, we often think of the input as x. Note that for neural nets which are not simple MLPS (say you have
skip connections or one which is more generally a DAG), then there are multiple ways ot execute the computation,
giving rise to different computational graphs, and this order is relevant in how we execute the reverse mode.

3 The Reverse Mode of Automatic Differentiation

The key in in understanding auto-diff is understanding the chain rule, where the insight is that zt effects the target
function only through its functional dependence on its children. This will allow us to work backwards. Clearly,

dzT
dzT

= 1 .

Now we will proceed recursively by computing the dzT
dzt

given the derivatives of zT with respect to the children of t.
Specifically, we make use of the chain rule:

dzT
dzt

=
∑

c is a child of t

dzT
dzc

∂zc
∂zt

(1)

where the sum is over all children of t. Here, a child is a node in the computation graph which zt directly points to.

A note on the chain rule. The subtle point in understanding auto-diff is understanding the chain rule due to that all
zt are dependent variables on z1:t−1 and w. It is helpful to think of zT as a function of both a single grandparent zt
along with w as follows (slightly, abusing notation):

zT = zT (w, zt)

where think of zt as a free variable. In particular, this means we think of zT as being computed by following the
evaluation trace (our program) except that at node t it uses the value zt; this node ignores its inputs and is “free” to use
another value zt instead. In this sense, we think of zt as a free variable (not depending on w or on any of its parents).
We will be interested in computing the derivatives (again, slightly abusing notation):

dzT
dzt

:=
dzT (w, zt)

dzt

for all the variables zt.

The “reverse mode” of AD. The reverse mode of AD algorithm is as follows.

1. Compute f(w) and store in memory all the intermediate variables z0:T .

3



2. Initialize:
dzT
dzT

= 1

3. Proceeding recursively, starting at t = T − 1 and going to t = 0

dzT
dzt

=
∑

c is a child of t

dzT
dzc

∂zc
∂zt

4. return dzT
dz0

= df
dw

Note that dzT
dz0

= df
dw by the definition of zT and z0.

4 Time complexity

The following theorem, referred to as the Baur-Strassen theorem, states that the computational runtime for computing
all d-partial derivatives of a scalar function f(w). is nearly the same as computing the function itself.

Theorem 4.1. ([Baur and Strassen(1983), Griewank(1989)]) Assume that every h(·) is specified as in our compu-
tational model (with the aforementioned restrictions). Furthermore , for h(·) of type 3, let us assume that we can
compute the derivative of h′(z) in time that is within a factor of 5 of computing h(z) itself. Using a given evaluation
trace, let T be the time it takes to compute f(w) at some input w, then the reverse mode computes both f(w) and df

dw
in time 5T . In other words, we compute all d partial derivatives of f in essentially the same time as computing f itself.

Proof. First, let us show the algorithm is correct. The equation to compute dzT
dzt

follows from the chain rule. Further-
more, based on the order of operations, at (backward) iteration t, we have already computed dzT

dzc
for all children c of

t. Now let us observe that we can compute ∂zc
∂zt

using the variables stored in memory. To see this, consider our three
cases (and let us observe the computational cost as well):

1. If h is affine, the derivative is simply the coefficient of zt.

2. If h is a product of terms (possibly with divisions), then ∂zc
∂zt

= zc(α/zt), where alpha is the power of zt. For
example, for z5 = z2z

2
4 we have that ∂z5

∂z4
= z5 ∗ (2/z4).

3. If zc = h(zt) (so it is a one dim function of just one variable), then ∂zc
∂zt

= h′(zt).

Hence, the algorithm is correct, and the derivates are computable using what we have stored in memory.

Now let us verify the claimed time complexity. The compute time T for f(w) is simply the sum of times required to
compute z1 to zT . We will relate this time to the time complexity of the reverse mode. In the reverse mode, note that
since ∂zc

∂zt
is used precisely once: it is computed when we hit node t. Now let us show that the compute time of zc

and the compute time for computing all the derivatives {∂zc∂zt
: t which are parents of c} are of the same order. If zc

is an affine function of its parents — suppose there are M parents — then zc takes time O(M) time to compute and
computing all the partial derivatives also takes O(M) in total: each ∂zc

∂zt
is O(1) (since the derivative is just a constant)

there are M such derivatives. A similar argument can be made for case 2. For case 3, computing ∂zc
∂zt

(for the only
parent t) is the same order as computing zc by assumption. Hence, we have show that computing zc and computing all
the derivatives {∂zc∂zt

: t which are parents of c} are of the same order. This accounts for all the computation required
to compute all the ∂zc

∂zt
’s. It is now straightforward to see that the remaining computation of all the dzT

dzt
’s using these

partial derivatives, is also of order T , since each ∂zc
∂zt

occurs just once in some sum.

The factor of 5 is simply more careful book-keeping of the costs.

4



References

[Griewank(1989)] Andreas Griewank. On automatic differentiation. In IN MATHEMATICAL PROGRAMMING:
RECENT DEVELOPMENTS AND APPLICATIONS, pages 83–108. Kluwer Academic Publishers, 1989.

[Baur and Strassen(1983)] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical Com-
puter Science, 22:317–330, 1983.

[Griewank and Walther(2008)] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
second edition, 2008.

5


	Auto-Differentiation (AD) in applied ML
	The Computational Model
	An example
	The computation graph and evaluation traces

	The Reverse Mode of Automatic Differentiation
	Time complexity

