
Homework 3
CSE 446: Machine Learning

University of Washington

1 Policies [0 points]
Please read these policies. Please answer the three questions below and include your answers
marked in a “problem 0” in your solution set. Homeworks which do not include these answers
will not be graded.

Gradescope submission: When submitting your HW, please tag your pages correctly as is
requested in gradescope. Untagged homeworks will not be graded, until the tagging is fixed.

Readings: Read the required material.
Submission format: Submit your report as a single pdf file. Also, please include all your

code in the PDF file in a section at the end of your document, marked “Code”; also specify which
problem(s) the code corresponds to. The report (in a single pdf file) must include all the plots
and explanations for programming questions (if required). Homework solutions must be organized
in order, with all plots arranged in the correct location in your submitted solutions. We highly
recommend typesetting your scientific writing using LATEX(see the website for references for free
tools). Writing solutions by hand will be accepted provided they are neat; written solutions need
to be scanned and included into a single pdf.

Written work: Please provide succinct answers along with succinct reasoning for all your
answers. Points may be deducted if long answers demonstrate a lack of clarity. Similarly, when
discussing the experimental results, concisely create tables and figures to organize the experimental
results. In other words, all your explanations, tables, and figures for any particular part of a question
must be grouped together.

Including your Python source code: For the programming assignments, submit your code
in the pdf file along with a neatly written README file that instructs us how you ran your code
with different settings (if applicable). Please note that we will not accept screenshots of Jupyter
notebooks. If you do use Jupyter, you must export your code to a text file and put the text of your
code in the submitted pdf file (in the last section) in a manner that can be executed in that order
(without any extraneous or missing code).

We assume that you always follow good practice of coding (commenting, structuring); these
factors are not central to your grade.

Coding policies: You must write your own code. You are welcome to use any Python libraries
for data munging, visualization, and numerical linear algebra. Examples includes Numpy, Pandas,
and Matplotlib. You may not, however, use any machine learning libraries such as Scikit-Learn,
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TensorFlow, or PyTorch, unless explicitly specified for that question. If in doubt, post to the
message boards.

Collaboration: It is acceptable for you to discuss problems with other students; it is not
acceptable for students to look at another students written answers. It is acceptable for you to
discuss coding questions with others; it is not acceptable for students to look at another students
code. Each student must understand, write, and hand in their own answers. In addition, each
student must write and submit their own code in the programming part of the assignment.

Acknowledgments: We expect the students not to refer to or seek out solutions in published
material from previous years, on the web, or from other textbooks. Students are certainly encour-
aged to read extra material for a deeper understanding.

Extra Credit Policy: In order to get extra credit, you must do all the regular problems.
Extra credit points will only be awarded if there are (honest attempts at) answers to all the regular
questions. This is because they are not designed to be alternative questions to the regular questions.

1.1 List of Collaborators
List the names of all people you have collaborated with and for which question(s).

1.2 List of Acknowledgements
If you do inadvertently find an assignment’s answer, acknowledge for which question and provide
an appropriate citation (there is no penalty, provided you include the acknowledgement). If not,
then write “none”.

1.3 Certify that you have read the instructions
Please make sure to read and follow these instructions. Write “I have read and understood these
policies” to certify this.
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2 Understanding Maximum Likelihood Estimation [11 points]
Let us get more intuition on the maximum likelihood principle.

1. [1 point] Suppose our data are scalar numbers z1, . . . zN , sampled from some underlying i.i.d.
model zi ∼ D. Write an expression that is a natural estimate for the mean of this distribution?

2. [4 points] Suppose now that we posit that our data come from a Gaussian model, where zi ∼
N(µ, σ2) (even though it may be that this modeling assumption is not actually true). Suppose
that we know the value of σ2. Use the maximum likelihood principle to determine an estimate
of µ. Show your derivation.

3. [1 point] In the previous problem, does our estimate of µ depend on σ2?
4. [1 point] Suppose our data z1, . . . zN are binary outcomes (say Heads or Tails), sampled from a

coin with probability of heads p. From our data, what is a natural estimate of the probability of
heads?

5. [4 points] Now use the maximum likelihood principle to obtain an estimate of p, where you
assume the underlying data generative model is a Bernoulli one (i.e. a Binomial distribution
with unknown parameter p). Again, show your derivation.

3 Binary Classification with Logistic Regression [30 points]
Recall the probabilistic model:

pw(y = 1 | x) =
1

1 + exp (−w · x)

pw(y = 0 | x) = 1− pw(y = 1 | x) = 1

1 + exp (w · x)
Our objective function here is:

Lλ(w) =
−1
N

N∑
n=1

log pw(y = yn | xn) +
λ

2
‖w‖2 .

Now let us minimize our cost.
It is helpful to define:

ŷn = pw(y = 1 | xn)

You can view this as a probabilistic prediction. This definition will help in allowing you to easily
modify your previous code.

3.1 Gradient Derivation [6 points]
1. [4 points] Show that:

dLλ(w)

dw
=
−1
N

N∑
n=1

(yn − ŷn)xn + λw .
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Remark: You might find this expression to be rather curious! It looks identical to the expression for our
gradient in the average squared error case. You are free to think about why this was a fortunate
coincidence. The choice of y ∈ {0, 1} was indeed intentional.

2. [2 points] Again, in order to make our code fast, simplify this gradient expresion with matrix
algebra by expressing it in terms of X ∈ RN×d, Y ∈ RN×1, Ŷ ∈ RN×1 (and other relevant
quantities).

3.2 Let’s try it out! [12 points]
Implement logistic regression on our “2” vs “9” dataset. Note: here you need to modify the
decision rule: we should label a digit as a “2”, i.e. y = 1, if w · x ≥ 0 (You should be able to see
why this threshold is appropriate.).

Make sure to explicitly include a bias term in the model and do not regularize this term.
To be precise, let the un-regularized loss be:

L(w, b) =
−1
N

N∑
n=1

log pw,b(y = yn | xn) ,

and so
Lλ(w, b) = L(w, b) +

λ

2
‖w‖2 .

Here pw,b is the model which includes a bias term. Note that gradient descent here would be:

w ← w − η∇wLλ(w, b)

= w − η (∇wL(w, b) + λw)

b ← b− η∂Lλ(w, b)

∂b

= b− η∂L(w, b)
∂b

where the last step follows since our cost function is not regularizing the bias term.
Now run gradient descent:

1. [1 point] Specify all your parameter choices (this should be your step size and λ). What stepsize
do you find works well, and what value of λ did you use? You might have to search around a
little (it helps to search by going up or down in multiples of 10).

2. [5 points] Show your log loss on the training set and the development set (where the y-axis is
the log loss and x-axis is the iteration). You should be able to convince yourself that the log loss
(sometimes referred to as the cross entropy) can be computed as:

−1
N

∑
n

(yn log ŷn + (1− yn) log(1− ŷn)) ,

which can be directly computed in python with operations on the vectors Y and Ŷ . Both curves
should be on the same plot. What value of λ did you use?
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3. [4 points] Make this plot again (with both curves), except use the misclassification error, as a
percentage, instead of the average log loss. Here, make sure to start your x-axis at a slightly
later iteration, so that your error starts below 5%, which makes the behavior more easy to view
(it is difficult to view the long run behavior if the y-axis is over too large a range).

4. [2 points] Again, it is expected that you obtain a good test error (meaning you train long enough
and you regularize appropriately, if needed). Report your lowest test error.

3.3 Let’s use stochastic gradient descent [12 points]
Now use stochastic gradient descent, using one point at a time:

1. [1 point] Roughly, what is the largest stepsize at which SGD makes progress? (above this you
will find that things start behaving very poorly).

2. [1 point] Specify your step size schedule, if you choose to decay it or what you did.
3. [5 points] After every 500 updates (starting before your first update at 0), make a plot showing

your training average log loss and your development average the log loss on the y-axis and the
iteration on the x-axis. Both curves should be on one same plot. What value of λ did you use?

4. [5 points] Make this plot again (with both curves, except use the misclassification error, as a
percentage, instead of average log loss. Here, make sure to start your x-axis at a slightly later
iteration, so that your error starts below 5%, which makes the behavior more easy to view (it
is difficult to view the long run behavior if the y-axis is over too large a range). Again, it is
expected that you obtain a good test error (meaning you train long enough and you regularize
appropriately, if needed). Report the lowest test error.

3.4 EXTRA CREDIT: Mini-batch, stochastic gradient descent [10 points]
Again, due to the manner in which matrix multiplication methods (as opposed to using “For
Loops”) allow for faster runtimes (often through GPU processers), it is often much faster to use
“mini-batch” methods by sampling m points at a time. By increasing the batch size, we reduce the
variance in stochastic gradient descent. In practice (and in theory), this tends to be very helpful as
increase m, and then there tends to be (relatively sharp) diminishing returns.

1. Now run stochastic gradient descent, using a mini-batch size of m = 100 points at a time. Here,
each parameter updates means you use m = 100 randomly sampled training points.

(a) [1 point] Roughly, what is the stepsize at which SGD starts to make significant progress?
(above this it is poorly behaved) You might find it interesting that this stepsize is different
than the m = 1 case.

(b) [4 points] After every 500 updates (starting before your first update 0), make a plot showing
your training average log loss and your development log loss on the y-axis and the iteration
on the x-axis. Both curves should be on one same plot. What value of λ did you use (if you
used it)? Specify your learning rate scheme if you chose to decay your learning rate.

Remark Note that every update now touches 100 points. However, an update should not be 100 times
slower (even though, technically, your computer is doing 100 as much computation). This is,
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again, due to how matrix multiplication is implemented.
(c) [4 points] Make this plot again (with both curves), except use the misclassification error, as a

percentage, instead of average log loss. Here, make sure to start your x-axis at a slightly later
iteration, so that your error starts below 5%, which makes the behavior more easy to view (it
is difficult to view the long run behavior if the y-axis is over too large a range). Again, it is
expected that you obtain a good test error (meaning you train long enough and you regularize
appropriately, if needed). Report the lowest test error.

2. [1 point] Comment on how your plots differ from using SGD with m = 1.

4 Convexity: Linear and Logistic Regression [14 points]
Let us understand a few properties of linear regression (under the square loss) and logistic re-
gression (under the log loss). Suppose we use sign(w · x) for predicting a label. Here, assume
yn ∈ {−1, 1}.

1. For logistic regression:

(a) [3 points] Suppose our training data are linearly separable and λ = 0. What does our weight
vector converge to and what is our misclassification error converging to? Why?

(b) [2 points] Suppose now that d ≥ n, λ = 0, and our n data points are all linearly independent.
What does our weight vector converge to? Why?

(c) [2 points] In both of these cases, why does regularization or “early stopping” make sense?
Make sure to consider the implications for the true error in your answer.

2. For linear regression:

(a) [1 point] 2 Suppose our training data are linearly separable. Suppose we run gradient descent
for the case of linear regression: is our squared error converging to 0?

(b) [2 points] Suppose now that d ≥ n, λ = 0, and our n data points are all linearly independent.
Suppose we run gradient descent for the case of the linear regression: is our squared error
converging to 0?

3. [3 points] Suppose we are running gradient descent (for the logistic regression problem under
the log loss). Suppose at some iteration our misclassification error hits exactly 0 on our training
set. If we continue to run gradient descent, do we expect that we will continue to update our
parameters? Why or why not?

5 Multi-Class Classification using Least Squares [16 points]
The MNist dataset, http://yann.lecun.com/exdb/mnist/, has been historically inter-
esting. Also, much of the earlier focus on certain methods and algorithms in machine learning was
partly due to obtaining good results on this dataset. If you work on the extra credit problem later
on, you will gain a little more perspective on how many of these issues are not so relevant, once
we start having a much more “flexible” representation.
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Let us now build a classifier for digit recognition on all 10 digits.
You will use the full dataset (same as you used for PCA in HW2), were x is 784 dimensions.

5.1 “One vs all classification” with Linear Regression
In the previous two class problem, we used linear regression with y ∈ {0, 1}. Now we have 10
classes. Here we will use a “one-hot” encoding of the label. The label yn will be a 10 dimensional
vector, where the k-th entry is 1 if the label is for the k-th class and all other entries will be 0.

1. [0 points] Create a label matrix of size Y ∈ RN×10 for both your training, dev. and test set.

Here, we can consider a vector valued prediction:

ŷn = W> · xn .

where sized W ∈ Rd×10 matrix.
As discussed in class, we can define the objective function here as:

Lλ(W ) :=
1

N

N∑
n=1

1

2
‖yn −W>xn‖2 +

λ

2
‖W‖2

where you can view the penalty as the sum of the squares of the entries of W .
Note that this formulation is literally the same as doing k-binary classification problems on

each of the classes separately, you will do a linear regression where you label a digit as Y = 1 if
and only if the label for this digit is k (for k = 0, 1, 2, . . . 9).

It is straightforward to verify that the solution is:

W ∗
λ =

(
1

N
X>X + λId

)−1(
1

N
X>Y

)
.

Note that here are stacking our the vectors yn and ŷn into the matrices Y ∈ RN×10 and Ŷ ∈ RN×10.
For classification, you will then take the largest predicted score among your 10 predictors.
Def. of the misclassification error: We say a mistake is made on an example (x, y) if our

prediction in {1, . . . k} does not equal the label y. The % misclassification error (on our training,
dev, test, etc) is the % of such mistakes made by our prediction method on our, respective, dataset.

Remark: This is sometimes referred to as “one against all” prediction. Note that we are just
doing 10 separate linear regressions and are stacking our answers together.

Also, the gradient of this loss function can be expressed as:

dLλ(w)

dW
=
−1
N

N∑
n=1

xn(yn − ŷn)> + λW . (1)

Note that this expression is of size d× k.
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Dataset You will use the MNIST dataset you used from the last assignment. It contains all 10 digits with
the labels. The instructor will post a function on Piazza for computing the misclassification %
error that you are free to use.

1. [4 points] Based on the above gradient expression, write out the matrix algebra expression for
this gradient in terms of X ∈ RN×d, Y ∈ RN×10, Ŷ ∈ RN×10 (and other relevant quantities),
where there is no “sum over n” in your expression.

2. [12 points] Decide which method you would like to use: the closed form expression, GD, or
SGD. Specify your method along with all your parameters. On the training set, dev set, and test
set, what are your average square losses and what is your misclassification % error?

5.2 EXTRA CREDIT: Take a matrix derivative on your own [5 points]
Prove equation 1. To do this, lookup some facts about matrix derivatives on the internet (there are
all sorts of “matrix cookbooks”, “cheat sheets”, etc. out there). Provide the one or two rules for
how one takes a matrix derivative to obtain the proof. The proof should be just a few steps.

Also, you should be able to convince yourself as to how this follows from the vector proof you
did earlier.

6 Multi-Class Classification using the the softmax [20 points]
We now turn to the softmax classifier. Here, y takes values in the set {1, . . . k}. The model is
as follows: we have k weight vectors, w(1), w(2), . . . w(k). Here, we can view these parameters as
columns in a matrix of size W ∈ Rd×10 matrix. For ` ∈ {1, . . . k},

pW (y = `|x) = exp(w(`) · x)∑k
i=1 exp(w

(i) · x)

Again, note that this is a valid probability distribution (the probabilities are positive and they sum
to 1). Also, note that we have “over-parameterized” the model, since:

pW (y = k|x) = 1−
k−1∑
i=1

pW (y = i|x)

We could define the model without using w(k). However, the instructor likes this choice as the
derivative expressions become a little simpler (and it makes it easier to re-use code).

As before, it is helpful to define the “prediction vector”:

ŷn = pw(y | xn)

where we view pw(y | xn) as k-dimensional (column) vector where the i-th component is pW (y =
i|xn).
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As before, the (negative) likelihood function on an N size training set is:

Lλ(W ) =
−1
N

N∑
n=1

log pW (y = yn | xn) +
λ

2
‖W‖2 .

where the sum is over the N points in our training set (where yn ∈ {1, . . . k}, so are we not using
the one hot encoding in this expression).

For classification, one can choose the class with the largest predicted probability.

1. [6 points] Write out the derivative of the log-likelihood of the soft-max function as a sum over
the N datapoints in our training set and in terms of the vectors xn, the one hot encoding yn,
and the (vector) prediction ŷn. (Hint: at this point, you likely will be able to guess the answer.
You should still be able to write out a concise derivation). Make sure the dimensions give you a
gradient of size d× k.

2. [2 points] Now write out the matrix algebra expression for this derivative in terms ofX ∈ RN×d,
Y ∈ RN×10, Ŷ ∈ RN×10 (and other relevant quantities).

3. Now use either gradient descent or stochastic gradient descent (using one point at a time):

(a) [1 point] Specify your parameter choices (your stepsize, λ, and and your step size schedule,
if you choose to decay it or what you did.)

(b) [5 points] Show your log loss on the training set and the development set (where the y-axis is
the log loss and x-axis is the iteration).

(c) [4 points] Make this plot again (with both curves), except use the misclassification error, as a
percentage, instead of the average log loss. Here, make sure to start your x-axis at a slightly
later iteration, so that your error starts below 15%, which makes the behavior more easy to
view (it is difficult to view the long run behavior if the y-axis is over too large a range).

(d) [2 points] Again, it is expected that you obtain a good test error (meaning you train long
enough and you regularize appropriately, if needed). Report your lowest test error.

7 EXTRA CREDIT: Let’s get to state of the art on MNIST!
[40 points]

If you seek extra credit for this problem, you must also do the extra credit problem in Q3. If
you do this, you should have the all the code you need to get going! Also, you must answer all
of the regular questions as well.

We will now shoot to get to “state of the art” on MNIST, without “distortions” or “pre-
processing”. The table in http://yann.lecun.com/exdb/mnist/, shows which strate-
gies use this pre-processing. In fact, you may even be curious if you can shoot to get “state of the
art” performance with vanilla least squares (or you may be curious if logistic regression provides
a notable improvement over least squares when you have lots of features?).

At the recent “NIPS” conference (one of the premier machine learning conferences), this talk,
youtube video, created quite some buzz; it is related to how we will tackle this problem.
There were many differing opinions expressed in subsequent discussions on the state of machine
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learning. The instructor’s hope is that, with more hands on experience, you will be better informed
about the issues in play. The talk is relevant, since we are basically implementing the method
discussed in this paper. The paper itself does not provide the most lucid justification; the
method is really just a “quick and dirty” procedure to make features. In practice, there are often
better feature generation methods; this one is remarkably simple.

In this problem, we will engage in the bad practice where we do not have a dev set. To a large
extent, looking “a little” at the test set is done in practice (and this shouldn’t hurt us too much if
we understand how confidence intervals work). However, this has been done for quite sometime
on this dataset, which is why the instructor is suspect of the test errors below 1.2%, among those
methods that do no use “distortions” or “pre-processing” or “convolutional” methods (we should
expect the latter methods to give performance bumps).

The views of the instructor are that about 1.4% or less is “state of the art”, without “distor-
tions” or “pre-processing” or “convolutional” methods (as discussed on the MNIST website). If
we wanted even higer accuracy, we should really move to convolutional methods, which we may
briefly discuss later in the class.

Finally, the approach below might seem a little non-sensical. However, an important lesson
is that large feature representations, appropriately blown up, often perform remarkably well once
you have a lot of labeled data.

Making the features
Grab the “mnist all 50pca dims.gz” dataset. It contains all the datapoints reduced down to 50
dimensions. There is no dev set. And there are 60,000 training points. The inputs have been
normalized so that the features vectors x are, on average, unit length, i.e. E[‖x‖2] = 1. Load the
modified MNIST dataset in Python as follows:

import gzip, pickle
with gzip.open("mnist_all_50pca_dims.gz") as f:

data = pickle.load(f, encoding="bytes")
Xtrain, Xtest = data[b"Xtrain"], data[b"Xtest"]
Ytrain, Ytest = data[b"Ytrain"], data[b"Ytest"]

Now let us try to make “better” features; we are not going to be particularly clever in the way
we make these features, though they do provide remarkable improvements. Let x be an image (as
a vector in Rd). Now we will map each x to a k-dimensional feature vector as follows: we will first
construct k random vectors, v1, v2,. . . , vk (these will be sampled form a Gaussian distribution). In
other words, you first sample a matrix V ∈ Rd×k, where the columns of this matrix are v1 to vk;
this can be done in python with the command np.random.randn(d, k).

Then our feature vector will be the following vector:

φ(x) = (sin(2v>1 x), sin(2v
>
2 x), . . . sin(2v

>
k x))
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Note that φ(x) is a k dimensional vector; sin(·) is the usual trigonometric function; and the factor
of 2 is a hyperparameter chosen by the instructor 1. You are welcome to try and alter the 2 to
another value if you find it works better. Note that you only generate V once; you always use the
same V whenever you compute φ.

We will use (drumroll please....) k = 60,000 features. This seems like an unwieldy number.
However, it will not actually be so bad since we you never actually explicitly construct and store
this dataset. You will construct it “on the fly”.

Tips
With only your laptop in hand (or the compute resources provided, which are hopefully not partic-
ularly impressive), this problem is just hard enough that it will force you to undersand many of the
issues at play in large scale machine learning. In fact, if you try to explicitly contstruct your feature
matrix of size N × k, which is of size 60,000 × 60,000, you will hopefully run out of memory.

Regardless, the problem is very much solvable, in a timely manner, with even meager compute
resources. The suggestions below are more broadly applicable to how we address many of the
issues in large scale machine learning.

• (mini-batching) Mini-batching helps. It is too costly to try to full gradient updates. Usem = 50.
• (memory) As the dimension is large in this problem, we seek to avoid explicitly computing and

storing the full feature matrix, which is of size N × k = N × N . Instead, you can compute
the feature vector φ(x) ’on the fly’, i.e. you recompute the vector φ(x) whenever you access
an image x. In particular, you must do this on your minibatch with matrix operations for your
code to be fast enough. If X̃ is your m × d min-batch data matrix, do you see how the matrix
sin 2X̃V relates to the features you desire? Here sin is applied component wise.
• (regularization) It is up to you to determine how (and if) you set it. We do expect you to get

good performance.
• (learning rates) With the square loss case, I like to set my learning rates large. And then I decay

them only if I need to.
• (interrupting your code) Sometimes I find it helpful to be able to interrupt my code (with “Ctrl-

C” or whatever you use) and have the ability to restart it without loosing my the current state of
my parameters. Make sure you understand how to do this, and feel free to discuss this on the
discussion board. This can be helpful. For example, for some problems, I may want to adjust
my learning rate “by hand”, and this allows me to do this.

Loss functions
You are free to try out both square loss and the logistic loss. The “objective function error” refers
to either the square loss or the logistic/softmax loss (whichever you used). It is encouraged you
also try the square loss as well (if you tried both, tell us!). In practice, in the small feature regime

1The aforementioned normalization of the data by the instructor makes this factor of 2 naturally correspond to a
certain scale of the data. You can understand this more by looking at the paper in the link. It is analogous to the choice
of a “bandwidth” in certain radial basis function kernel methods.

11 of 14



the softmax usually dominates the square loss; once you have lots of features sometimes the square
loss does as well as logistic regression. We will be giving credit based on overall performance, and
we will also give partial credit.

7.1 Let’s implement it, starting small. [15 points]
It is best to start small, which makes it easier for you to debug your code. Start with k = 5,000
features.

1. [1 points] Roughly, what is the stepsize at which SGD starts to diverge? What value of λ did
you use (if you used it)? Specify your learning rate scheme if you chose to decay your learning
rate. Let us know here if you used the square loss or the logistic loss as your objective function.
Or if you tried both!

2. [3 points] After every 500 updates, make a plot showing your average objective function error
and your test average objective function error, with your average objective function error on the
y-axis and the iteration # on the x-axis. Both curves should be on one same plot. Also make
sure to start these plots sufficiently many updates after 0 and to label the x-axis appropriately
based on where you start plotting (if you start plotting at update 0, your plots will be difficult to
read and interpret due to the average objective function error initially dropping so quickly).

3. [3 points] For the misclassification error, make the same plots (again, with two curves. Do not
start your plots at update 0. Make sure your plots are readable). Again, there should be two
curves.

4. [2 points] Plot the euclidean norm of the weight vector, where the x-axis is the iteration number
and y-axis is the norm of the weight vector at that update (you need only compute/store the norm
every 500 iterations, as before). It is often helpful to plot the norms of you weight vectors, and
you might find it striking how this curve behaves.

5. [3 points] What is the lowest training and test average objective function error losses achieved
during your runs? Make sure you have run for long enough.

6. [3 points] What is the lowest training and test misclassification errors achieved during your runs?
What is the smallest number of total mistakes made (out of the 60K points) on your training
set and on your test set (over all updates)? Note you can just derive this from your lowest
misclassification % errors on your train and test sets, respectively. Comment on overfitting.

7.2 Go big! [25 points]
Now let us use k = 60,000 features. Here, when you estimate your average objective function
error and misclassification errors on your training set (for plotting purposes), you could use some
fixed 10, 000 training points (say the first 10K points in the training set) if you have issues with
speed/memory (you do not want to ever create a 60K × 60K matrix). If you do this, you should
still ensure you are training on all 60K training points. Credit for this problem will be based on the
quality of your plots and your test error; we want you to figure out how to get good performance!

1. [2 points] Roughly, what is the stepsize at which SGD starts to diverge? What value of λ did
you use (if you used it)? Specify your learning rate scheme if you chose to decay your learning
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rate.
2. [3 points] After every 500 updates, make a plot showing your training average objective function

error and your test average objective function error, with your average objective function error on
the y-axis and the iteration # on the x-axis. Both curves should be on one same plot. Also make
sure to start these plots sufficiently many updates after 0 and to label the x-axis appropriately
based on where you start plotting (if you start plotting at update 0, your plots will be difficult to
read and interpret due to the average objective function error initially dropping so quickly).

3. [3 points] For the misclassification error, make the same plots (again, with two curves. Do not
start your plots at update 0. Make sure your plots are readable). Again, there should be two
curves.

4. [3 points] Plot the euclidean norm of the weight vector, where the x-axis is the iteration number
and y-axis is the norm of the weight vector at that update (you need only compute/store the norm
every 500 iterations, as before). It is often helpful to plot the norms of you weight vectors, and
you might find it striking how this curve behaves.

5. [2 points] What is the lowest training and test average objective function error achieved during
your runs? Make sure you have run for long enough.

6. [6 points] What is the lowest training misclassification % error achieved over all of your runs?
What is the smallest number of total mistakes made (out of the 60K points) on your training
set and on your test set (over all updates)? Note you can just derive this from your lowest
misclassification % errors on your train and test sets, respectively (remember that you need to
divide by a factor of 100 when dealing with %’s!). If you estimated your training error with a
10K subset, then make sure to multiply by a 6 when estimating the total number of errors on
your training set.

7. [6 points] Provide a short discussion (about a paragraph) on overfitting. Do you see your training
average objective function error rise? Did you make an extremely small number of total mistakes
on your training set and was this very different from your test set? Comment on your findings.

7.3 Reflections [0 points]
You are welcome to jot down a few thoughts about what you found here. If you tried both square
loss and logistic loss, please let us know. We may give credit adjustments if you tried both the
square loss and the logistic loss.

8 EXTRA CREDIT: Proving a rate of convergence for GD for
the least squares problem [20 points]

This is a fundamental convergence result in mathematical optimization. With a good understanding
of the SVD, the proofs are short and within your reach.

Let us consider gradient descent on the least squares problem.

L(w) =
1

N

1

2
‖Y −Xw‖2
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Gradient descent is the update rule:

w(k+1) = w(k) − η∇L(w(k))

Let λ1, λ2, . . . λd be the eigenvalues of 1
N
X>X in descending order (so λ1 is the largest eigenvalue).

1. [8 points] In terms of the aforementioned eigenvalues, what is threshold stepsize such that, for
any η above this threshold, gradient descent diverges, and, for any η below this theshold, gradient
descent converges? You must provide a technically correct proof.

2. [8 points] Set η so that:

‖w(k+1) −w∗‖ ≤ exp(−κ)‖w(k) −w∗‖

where κ is some (positive) scalar. In particular, set η so that κ is as large as possible. What is
the value of η you used and what is κ? Again, you must provide a proof. You should be able to
upper bound your expression so that you can state it in terms of the maximal eigenvalue λ1 and
the minimal eigenvalue λd. The above equation shows a property called contraction.

3. [4 points] Now suppose that you want your parameter to be ε close to the optimal one, i.e. you
seek ‖w(k) −w∗‖ ≤ ε. How large does k need to be to guarantee this?

9 Code
Please include all your code in the PDF file in this section. Specify which problem(s) the code
corresponds to. Re Jupyter: refer to the policies section of the HW.
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