
The cumulative distribution function for a random variable X is 
the function F: R →[0,1] defined by 
                        F(a) = P[X≤a]

Ex: if X has probability mass function given by:

cdf
pmf

cumulative distribution function

8NB: for discrete random variables, be careful about  “≤” vs “<”



expectation
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For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

For the equally-likely outcomes case, this is just the average of the 
possible random values of X

For unequally-likely outcomes, it is again the average of the possible 
random values of X, weighted by their respective probabilities

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)

  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0

expectation

11

average of random values, weighted 
by their respective probabilities
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properties of  expectation

Linearity of expectation, I

For any constants a, b:   E[aX + b] = aE[X] + b

Proof:



properties of  expectation–example
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What is E[X]?

E[X]  = 1•1/4 + 0•1/2 + (-1)•1/4  =  0

What is E[X2]?

E[X2] = 12•1/4 + 02•1/2 + (-1)2•1/4 = 1/2

What is E[2X+1]?

E[2X + 1] = 2E[X] + 1 = 2•0 + 1 = 1

HH A wins $2
HT Each takes 

back $1TH
TT B wins $2

P(X = +1) = 1/4
P(X = 0) = 1/2
P(X = -1) = 1/4

Let X = A’s net gain: +1, 0, -1, resp.:A & B each bet $1, then flip 2 coins:

Fr
om

 sl
ide

 20
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properties of  expectation

Note:
Linearity is special!
It is not true in general that 

E[X•Y] = E[X] • E[Y]
E[X2] = E[X]2

E[X/Y] = E[X] / E[Y]
E[asinh(X)] = asinh(E[X])

•
•
•

← counterexample  above



variance
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what  does variance tell us?

The variance of a random variable X with mean E[X] = μ is

Var[X] = E[(X-μ)2], often denoted σ2.

1:  Square always ≥ 0, and exaggerated as X moves away  
from μ, so Var[X] emphasizes deviation from the mean.

II:  Numbers vary a lot depending on exact distribution of 
X, but it is common that X is 

within μ ± σ   ~66% of the time, and 
within μ ± 2σ ~95% of the time.

(We’ll see the reasons for this soon.)
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            Var[aX+b] = a2 Var[X]

Ex: 

properties of  variance
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   E[X] = 0
Var[X] = 1

        Y = 1000 X
   E[Y] = E[1000 X] = 1000 E[X] = 0
Var[Y] = Var[103 X]=106Var[X] = 106

NOT linear;
insensitive to location (b), 

quadratic in scale (a)



independence 

and    .  

joint   . 

distributions
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Theorem: If X & Y are independent, (any dist, not just binomial) then  
Var[X+Y] = Var[X]+Var[Y]

Alternate Proof:  

variance of  independent r.v.s is additive

62

(Bienaymé, 1853)

slide 60

FYI, the quantity E[XY]-E[X]E[Y] is called the covariance 
of X,Y.  As shown, it is 0 if X,Y are independent; if not zero 
it is a useful  measure of their degree of dependence.

Slide 45



random variables – summary

Conditional Expectation:

  E[X | A] = ∑x x•P(X=x | A)
Law of Total Expectation

E[X] = E[X | A]•P(A) + E[X | ¬ A]•P(¬ A)
Variance:  

Var[X] = E[ (X-E[X])2 ] = E[X2] - (E[X])2]
Standard deviation: σ = √Var[X]
Var[aX+b] = a2 Var[X]

If X & Y are independent, then 
E[X•Y] = E[X]•E[Y] 
Var[X+Y] = Var[X]+Var[Y] 

93

“Variance is insensitive to location, quadratic in scale”

} (These two equalities hold for 
indp rv’s; but not in general.)


