
Section 08: Solutions

1. Singular Value Decomposition

(a) Let A be a symmetric n × n matrix. Take U to be a matrix whose columns are an orthonormal eigenbasis of
A, and S to be a diagonal matrix of eigenvalues (ordered the same as U). Show that for any vector x, Ax is
the same as USUTx (i.e. USUT is the SVD of A)

Solution:

S Let {u1, u2, . . . , un} be the rows of U . They are orthogonal to each other and unit norm. For any x ∈ Rn

we can write x =
∑n

i=1 αiui. Then we have:

USUTx = USUT
n∑

i=1

αiui

=

n∑
i=1

αiUSUT ui

=

n∑
i=1

αiUSei

=
n∑

i=1

αiUλiei

=

n∑
i=1

αiλiui

=

n∑
i=1

αiAui

= A

n∑
i=1

αiui

= Ax

(b) Let A have SVD USV T . Show AAT has the columns of U as eigenvectors with associated eigenvalues S2.

Solution:

We have A = USV T then:

AAT = USV T (USV T )T

= USV T ((V T )TSTUT )

= USV TV SUT

= USV TV SUT

= USISUT

= US2UT

Since we can diagonalize AAT into US2UT , it has eigenvectors that are columns of U and associated
eigenvalues S2.

1



(c) Let A have SVD USV T . Show ATA has the columns of V as eigenvectors with associated eigenvalues S2.

Solution:

We have A = USV T then:

ATA = (USV T )TUSV T

= V SUTUSV T

= V SISV T

= V S2V T

Since we can diagonalizeATA into V S2V T , it has eigenvectors that are columns of V and associated eigenvalues
S2.

2. SVD Pictures

We’ve seen before that demeaning our data makes it easier to work with. There’s a more general operation called
“whitening” where we also normalize the important directions of our data. In this problem, we’ll do the operations
corresponding to one version of whitening as a way to get better intuition on how SVD works.

Let X ∈ Rn×d be a matrix of data points, and J be I − 11T /n. Let JX have a singular value decomposition of
JX = USV T .

Suppose we know that our points were drawn from a Gaussian distribution with covariance Σ. We would expect
most of our points to lie in an ellipse, whose axes are the eigenvectors ofΣ, scaled by the corresponding eigenvectors.
We’ve drawn that ellipse below, with one area shaded so we can see its orientation.

𝑋

For each of the following matrices:

• Verify that the resulting matrix is still n× d, and therefore can be interpreted as modifying the datapoints of
X

• Draw what the resulting data set would look like (i.e. how would the ellipse representing the covariance
move?).

(a) JX Solution:

2



Since J is n× n, the resulting matrix is, indeed n× d.

Notice that 11T /n is an n× n matrix where every entry is 1/n.

JX = (I − 11T /n)X

= X − 11TX/n

= X − 1

(
n∑

i=1

xT
i /n

)
= X − 1x

where x is the average of the rows of X. Thus JX is just X “demeaned”

𝐽𝑋

(b) JXV Solution:

Since V is d× d, JXV is still n× d.

Below we will give a few different views of the calculation (they all say the same thing, but alternative
wordings may give a different perspective)

We want to think about row i of JXV . Define yi to be the ith row of JX written as a column vector. When
we multiply JXV , we will find yTi vj and put that number in entry i, j of the matrix. Since the columns of
V form an orthnormal basis of Rd, the ith row of JXV is just y rewritten in the basis of V .

Said differently, if row i of JXV is the vector z then yi =
∑

z[j]vj .

But then what does JXV look like? Well the jth entry of row i is its dot product with vj . I.e. in each
direction of the standard basis we are going to go as far as we went in the principal component directions
in y. So we have rotated the ellipse to now be on the standard basis.

3



𝐽𝑋𝑉

(c) JXV S−1, where S−1 is the d×d diagonal matrix, where S−1
i,i = 1/Si,i (note that since S is not square, calling

a matrix S−1 is an abuse of notation)

Solution:

Since S−1 is d× d, the matrix remains n× d.

Note that S−1 just renormalizes each column j by 1/σj . Thus row i of JXV S−1 is the ith demeaned data
point, written in the singular vector basis, now normalized, so the most extreme data points have length
at most 1 in the new basis.

How do we know the lengths become at most 1? The easiest way is to look at a single row, let ei be the
vector with a 1 in entry i and all 0’s everywhere else. Note that eTi A is the ith row of the matrix A. To
understand the length of the ith row we want:

||(eTi JXV S−1)||22 = (eTi JXV S−1)
T
(eTi JXV S−1)

= (eTi USV TV S−1)
T
(eTi USV TV S−1)

= (eTi USS−1)
T
(eTi USS−1)

= (eTi UI ′)
T
(eTi UI ′)

Where I ′ is the n× d matrix, which has 1s in every entry on the diagonal and 0’s everywhere else. (Recall
that S−1 isn’t really an inverse – S isn’t square so it can’t have a real inverse)

Let U ′ be the n× d matrix formed by deleting columns d+ 1, d+ 2, . . . , n of U .

(eTi UI ′)
T
(eTi UI ′) = (eTi U

′)
T
(eTi U

′)

= U ′
i
T
U ′
i ≤ 1

Where the last inequality follows from the fact that (the full row) Ui is an orthonormal vector. Since we’ve
just deleted entries from it, the length of the vector only decreased, and so the length is still at most 1.

Vectors of length at most 1 lie inside a circle, so we’ve “squashed” our vectors. Notice that since we’re
shrinking each direction according to its singular value, we are shrinking each vector by a different amount,
such that we end up with a circle.

What’s the radius of our circle? It turns out it’s about 1√
n
– try drawing some real data for various n and

see what happens!

4



𝐽𝑋𝑉𝑆−1

(d) JXV S−1V T

Solution:

row i of JXV S−1V T : is harder to understand than the previous ones, let’s do a calculation. Recall that
entry i, j of JXV S−1 is 1

σj
yTi vj , where yi is the demeaned version of xi.

Then entry i, j of JXV S−1V T is:
∑d

k=1
1
σk

yTi vkvk[j]

so we can write row i as:
∑d

k=1
1
σk

yTi vkv
T
k =

∑d
k=1

1
σk

yiI So we have just yi but normalized by the σs.
Thus we have “rotated” the points back to the original space, but kept them the same length as before.

𝐽𝑋𝑉𝑆−1𝑉𝑇

3. Extra Material: Kernel Principal Component Analysis

This material here is intended as a way to get more practice with both PCA and kernels – we won’t expect you to
have a deep understanding of kernel PCA as a process.

We’ve seen that kernels are a way of using complicated feature maps without actually calculating the feature maps,
as long as:

5



• We only care about inner products in the feature space.

• The new feature space is chosen so that we can use the “kernel trick” to calculate dot products directly, without
actually applying the feature map.

Since we know:

• PCA is useful in settings where we have linear relationships in our data.

• feature maps can let us use linear methods even when our data has non-linear relationships

it’s a reasonable idea to think we might try to apply a feature map, and do PCA in the feature space. But we’ve seen
that we can use very powerful feature maps if all we care about is inner products (via the kernel trick).

In this problem we’ll see that this is possible. Let {xi}ni=1 be a set of datapoints in d-dimensions, already demeaned.
Define Σ = 1

n

∑n
i=1 xix

T
i to be the (d× d) emperical covariance matrix of the data points.

(a) Let φ : Rd → Rk be a feature map. What is the formula for Ψ, the emperical covariance matrix of {φ(xi)}ni=1?
What are its dimensions?

Solution:

Ψ = 1
n

∑n
i=1 φ(xi)φ(xi)

T The matrix is k × k.

(b) Let vj be an eigenvector of Ψ. Show that Ψvj can be written as a linear combination of φ(xi).

Solution:

Ψvj =
1
n

∑n
i=1 φ(xi)φ(xi)

T vj Regrouping φ(xi)
T vj as a coefficient aij , we get:

Ψvj =
1

n

n∑
i=1

aijφ(xi)

So we have written λjvj as a linear combination of the φ(xi).

(c) Use the observation from the previous part to write the following equation:

1

n

n∑
i=1

φ(xi)φ(xi)
T

n∑
i=1

aijφ(xi) = λj

n∑
i=1

aijφ(xi)

where aij are scalars.

Solution:

Expand the definition of Ψ, and we get the equation above.

(d) Rewrite the equation above so that it uses the kernel matrix (Hint: left-multiply by φ(x`)
T first).

Solution:

6



Let’s start with φ(x`)
T times the left hand side of the equation above:

φ(x`)
T 1

n

n∑
i=1

φ(xi)φ(xi)
T

n∑
i=1

aijφ(xi) =
1

n

n∑
i=1

φ(x`)
Tφ(xi)φ(xi)

T
n∑

k=1

akjφ(xk)

=
1

n

n∑
i=1

φ(x`)
Tφ(xi)

n∑
k=1

akjφ(xi)
Tφ(xk)

=
1

n

n∑
i=1

k(x`, xi)

n∑
k=1

akjk(xi, xk)

On the right hand side:

φ(x`)
Tλj

n∑
i=1

aijφ(xi) = λj

n∑
i=1

aijk(x`, xi)

(e) Use the previous equation to generate a matrix version of this equation (Hint: what would happen if you
replaced φ(x`) with each xi in order and stacked the equations?)

Solution:

Notice that the `th row of K2 is the `th row of K, dotted with each column of K. Thus the left hand side
is exactly the `th row of K2aj , where aj is the vector formed by all the aij . Thus if we move the 1

n to the
other side, and stack all possible values of `, we get a LHS ofK2aj . On the right hand side, the summation
is the `th row of K time aj , again stacking all possible ` on top of each other (and remembering we moved
the n to the other side we have:

K2aj = λjnKaj

Eliminating one K from each side (as we did for regular PCA) we have

Kaj = λjnaj

(f) Argue that if we have a φ that allows for the “kernel trick” everything we need to do for PCA (i.e. finding
X, aj and calculating φ(x)T vj for any x and vj can always be done without going into the kernel space (i.e.
using only the kernel function).

Solution:

To solve the eigenvalue problem, we need to calculate K (which we can do since we assumed we can do
the kernel trick), which allows us to calculate the aj .

we also will want to calculate the φ(x)T vj =
∑n

i=1 aijφ(x)
Tφ(xi) =

∑n
i=1 aijk(x, xi) so we can use the

kernel trick here as well.

7


	Singular Value Decomposition
	SVD Pictures
	Kernel Principal Component Analysis

