
1. Stein’s Paradox

In this problem, we’ll use bias-variance tradeoff to find a non-obvious way of estimating the mean of unrelated
distributions.

So far in class, we’ve always been trying to learn a function – given a bunch of features, understand how they predict
the single-number output. In this problem, we’re trying to do something a little different. We have n completely
unrelated probability distributions. We’re going to get one sample from each of the distributions, and attempt
to predict each of their means. For some examples, our distributions might be: high temperature in Chicago on
January 1st, low temperature in Seattle on December 1st, and your friend’s score on the midterm.

More formally, let θ ∈ Rn be the (unknown) true means of our n distributions. We will get a vector X where
each Xi ∼ N (θi, σ

2). We’re assuming that every distribution has the same variance, but our means could be very

different. Our job is to report θ̂ to minimize our expected error: E
[
||θ̂ − θ||22

]
.

1.1. The Natural Estimator

The most natural estimator is to just guessX (i.e. set θ̂ = X). It doesn’t seem like we have any other viable strategy.
We’ll use bias-variance tradeoff to show that there’s actually a better estimator.

(a) Split the error into bias2 and variance. I.e. show

E[||θ̂ − θ||22] = ||E[θ̂]− θ||22 + E[||θ̂ − E[θ̂]||22]

Hint: add and subtract E[θ̂].

Solution:

We’ll show two versions of this calculation. They’re identical, but in one we use summations, and in the
other we use vector notation.

E[||θ̂ − θ||22] = E

[
n∑

i=1

(θ̂i − θi)
2

]
=

n∑
i=1

E
[
(θ̂i − θi)

2
]

=

n∑
i=1

E
[
(θ̂i − E[θ̂i] + E[θ̂i]− θi)

2
]

=

n∑
i=1

E[(E[θ̂i]− θi)
2] +

n∑
i=1

E[(θ̂i − E[θ̂i])2] +
n∑

i=1

E
[
2(E[θ̂i]− θi)(θ̂i − E[θ̂i])

]
=

n∑
i=1

E
[
(E[θ̂i]− θi)

2
]
+

n∑
i=1

E
[
(θ̂i − E[θ̂i])2

]
+

n∑
i=1

E[2(E[θ̂i]− θi)(θ̂i − E[θ̂i])]

= E||E[θ̂]− θ||22 + E||θ̂ − E[θ̂]||22 + E[2(E[θ̂i]− θi)(θ̂i − E[θ̂i])]

Where we used linearity of expectation repeatedly. It is now enough to show that the final term is equal
to 0. Indeed, note that E[θ̂i] − θi is just a number, so we can move the expectation inside to get the last

term is: 2(E[θ̂i]− θi) ·E
[
(θ̂i − E[θ̂i]

]
By linearity of expectation, the last factor in the product is 0 Thus the

whole term is 0 as required.
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Using vector notation:

E
[
||θ̂ − θ||22

]
= E

[
||θ̂ − E[θ̂] + E[θ̂]− θ||22

]
= E

[
||θ̂ − E[θ̂]||22

]
+ 2E

[
(θ̂ − E[θ̂)T (E[θ̂]− θ)

]
+ ||E[θ̂]− θ||22

= E
[
||θ̂ − E[θ̂]||22

]
+ ||E[θ̂]− θ||22

Where the last step is a result of E
[
θ̂ − E[θ̂]

]
= E[θ̂]− E[E[θ̂]] = 0.

(b) What is the variance of the estimator θ̂ = X? Hint: Remember that for a random variable Z, Var(Z) =
E[(Z − E[Z])2]

Solution:

E[||θ̂ − E[θ̂]||22] = E

[
n∑

i=1

(
θ̂i − E[θ̂i]

)2]

=

n∑
i=1

E
[(

θ̂i − E[θ̂i]
)2]

=

n∑
i=1

(
σ2
)

= nσ2

Where the third line follows from knowing that Var(θ̂i) = σ2.

(c) What is the bias2 of the estimator θ̂ = X? Solution:

||E[θ̂]− θ||22 =

n∑
i=1

(E[θ̂i]− θi)(E[θ̂i]− θi])

=

n∑
i=1

(θi − θi)(θi − θi)

= 0

1.2. A Different Estimator

The Bias-Variance Tradeoff says that since our error is just the sum of the bias2 and the variance, if we can find a
way to “tradeoff” bias for variance, we can affect our error. With our previous estimator, the two sources of error
are quite imbalanced. None of our error is from bias, it all comes from variance. Can we think of a way to reduce
variance (even if it means increasing the bias)?

Normally, the way we would reduce variance would be to sample the random variables again and take the average
of the samples. But we can’t do that for this problem (it would take us a whole year to get another high temperature
on January 1st). Another way to decrease the variance is to “scale down” the random variable. E.g. say we’ll have
9
10 of our estimator come from the random object, and the remaining 1

10 come from somewhere else. What else can
we use? Let’s just use 0. This kind of estimator is sometimes called a “shrinkage estimator” because we’re pulling
the results toward 0.

Our estimator is going to be 9
10X. We’ve certainly decreased the variance. But that should sound crazy – we’re
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biasing ourselves. We’re intentionally guessing something we know is a biased estimator. But our hope is that we
will decrease the variance enough to more than cancel out the increase in bias. Let’s see.

(a) We’ve changed the estimator, does the error still break down neatly into bias and variance? Or do we have to
change some math from part a of the last question?

Solution:

We never used any facts about θ̂ in the calculation! None of the work needs to change. Bias-Variance
tradeoff is a function of the way we define our error, not of the particular prediction we make.

(b) What is the variance of the estimator θ̂ = 9
10X ?

Solution:

E[||θ̂ − E[θ̂]||22] = E

[
n∑

i=1

(
θ̂i − E[θ̂i]

)2]

=
n∑

i=1

E
[(

θ̂i − E[θ̂i]
)2]

=

n∑
i=1

(
81

100
σ2

)
=

81n

100
σ2

Where the third line follows from Var
(

9
10 θ̂i

)
=
(

9
10

)2
Var(θ̂i)

(c) What is the bias2 of the estimator θ̂ = 9
10X? Solution:

||E[θ̂]− θ||22 =

n∑
i=1

(E[θ̂i]− θi)(E[θ̂i]− θi])

=

n∑
i=1

(
1

10
θi

)(
1

10
θi

)

=
1

100

n∑
i=1

θ2i

(d) Suppose you know that the variance of our samples is quite a bit. Specifically assume σ2 > 1/10θ2i for all i.
(For the temperature examples we gave, this is pretty reasonable. At least if we use Celsius temperatures. The
average Celsius high in Chicago is about 4 degrees, so a variance of about 1.6 degrees Celsius suffices) Have
we improved the estimator?

Solution:

If 19n
100σ

2 > 1
100 ||θ||

2 (i.e. the decrease in variance was more than the increase in the bias2) then we have
improved the estimator. But by our assumption, 1

100 ||θ||
2 < 10

100nσ
2 < 19n

100σ
2, so we have improved our

estimator!

What’s the message here? This is a very weird estimator. It’s so weird that when estimators like this work,
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it’s referred to as “Stein’s Paradox.” What fundamentally happens in this example is that because we’re
using squared error, if we can shrink the error of the worst estimate (even if we correspondingly increase
the error of the other estimates) we’ll shrink the overall error, because squared error very heavily punishes
large errors, but only moderately punishes moderate errors. One way of interpreting this paradox is that
the squared error isn’t the only error you might care about. You might really care about the sum of the
absolute errors (instead of their squares) in which case, you wouldn’t see a similar effect.

Regardless of the interpretation, this result is counter-intuitive. We just decided to guess smaller values
than our samples gave us. On its face the idea is crazy – we only would have come up with such an idea
if we had broken down our error into bias and variance and could see where the error was coming from.
This is the real takeaway of this calculation – if you can understand where your error is coming from, you
might be able to generate new ideas for what to do about it.

1.3. Thinking More about the Estimators

The estimator we came up with in the last problem is unintuitive for more reasons than we’ve already seen. Suppose
we scaled all our data points (i.e. instead of X we got aX + b), e.g. we were expecting to get our data in Celsius,
but it came to us in Fahrenheit. We would expect that scaling our old estimate, i.e. now reporting aθ̂ + b would
give us the same answer as if we did our estimate afresh knowing we were getting data in Fahrenheit.

(a) Is the “natural estimator” scale invariant?

Solution:

Yes, we’re guessing aX + b either way.

(b) Is the “shrinkage estimator” 9
10X scale invariant?

Solution:

No! If we estimate first, then scale we get a 9
10X + b but if we scale first then estimate we get 9

10 (aX + b).
Our estimator is shrinking toward 0. But when we changed from Fahrenheit to Celsius, we changed what
0 was, so we got a different prediction!

Here’s another interpretation of Stein’s Paradox. We might implicitly want a few things for our estimators:
accuracy (in the sense of low-mean-squared-error), unbiasedness, and scale-invariance. It turns out if
you’re willing to give up two of those three, you can slightly improve the error. Whether that tradeoff
makes sense or not depends on what you want – do you care more that your estimator makes a lot of
intuitive sense, and behaves “nicely” or do you want to scrape every last bit of error you can out of your
estimator? Neither decision is always right or always wrong, but you should at least consider what you’re
giving up in either case.

It turns out we can do even better than estimating 9
10X– our idea was to shrink X toward 0 by a constant ratio (i.e.

multiply everything by 9/10). If we instead shrink it in a way that depends on σ2 and ||X||22, we’ll be able to come
up with an estimator that has less error than X, regardless of the relationship between σ2 and θ.

The “James-Stein Estimator, θ̂ =
(
1− (n−2)σ2

||X||22

)
X, always has less error than X.

1.4. A Harder Calculation

Want more practice with bias-variance tradeoff? Here’s another version of Stein’s Paradox. Instead of shrinking
toward 0, shrink toward X, the mean of all of your data points, i.e. X = 1

n

∑n
i=1 Xi. If your data points are

coming from similar sources (say each θi is a different baseball player’s true batting average), you can think of this
as reflecting a belief that all the means should be generally similar. (Though this shrinking still works even if the
sources are very different, and the result is still counter-intuitive). Let 1 be the n× 1 vector of all 1’s, and let λ be a
real number between 0 and 1. In this problem we’ll find the way to choose λ to make θ̂ = (1− λ)X + λX1 as good
of an estimator as possible.
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(a) What is the variance of the estimator θ̂ = (1− λ)X + λX1 ?

Solution:

We’ll first do an intermediate calculation that we’ll need later:

E[X − θ] =
1

n2
E

( n∑
i=1

(Xi − θi)

)2


=
1

n2
E

 n∑
i=1

n∑
j=1

(Xi − θi)(Xj − θj)


=

1

n2
E

[
n∑

i=1

(Xi − θi)
2

]

=
1

n2

n∑
i=1

σ2

=
σ2

n

Now let’s calculate the variance.

E
[
||θ̂ − E[θ̂]||22

]
= E

[
||(1− λ)(X − θ) + λ(X − θ)1||22

]
= (1− λ)2E

[
||X − θ||22

]
+ 2λ(1− λ)E

[
(X − θ)T1(X − θ)

]
+ λ2nE

[
(X − θ)2

]
= (1− λ)2nσ2 + 2λ(1− λ)nE

[
(X − θ)2

]
+ λ2nE

[
(X − θ)2

]
= (1− λ)2nσ2 + 2λ(1− λ)σ2 + λ2σ2

= (1− λ)2nσ2 + (1− λ+ λ)2σ2 − (1− λ)2σ2

= (1− λ)2(n− 1)σ2 + σ2

(b) What is the bias2 of the estimator?

Solution:

||E[θ̂]||22 = ||(1− λ)θ + λθ1 − θ||22
= λ2||θ1 − θ||22

= λ2
n∑

i=1

(θi − θ)2

(c) What value of λ will result in the best estimator?

Solution:

As always, our strategy is to take a derivative and set it equal to 0. Our objective is (1 − λ)2(n − 1)σ2 +
σ2 + λ2

∑n
i=1(θi − θ)2, so we want to solve

−2(1− λ)(n− 1)σ2 + 2λ

n∑
i=1

(θi − θ)2 = 0
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Solving for λ gives

λ =
σ2

σ2 + 1
n−1

∑n
i=1(θi − θ)2

2. Biased Test Error

Is the test error unbiased for these programs? If not, how can we fix the code so it is?

2.1. Program 1

1 # Given dataset of 1000-by-50 feature

2 # matrix X, and 1000-by-1 labels vector

3

4 mu = np.mean(X, axis=0)

5 X = X - mu

6

7 idx = np.random.permutation(1000)

8 TRAIN = idx[0:900]

9 TEST = idx[900::]

10

11 ytrain = y[TRAIN]

12 Xtrain = X[TRAIN, :]

13

14 # solve for argmin_w ||Xtrain*w - ytrain||_2

15 w = np.linalg.solve(np.dot(Xtrain.T, Xtrain), np.dot(Xtrain.T, ytrain))

16

17 b = np.mean(ytrain)

18

19 ytest = y[TEST]

20 Xtest = X[TEST, :]

21

22 train_error = np.dot(np.dot(Xtrain, w)+b - ytrain,

23 np.dot(Xtrain, w)+b - ytrain ) / len(TRAIN)

24 test_error = np.dot(np.dot(Xtest, w)+b - ytest,

25 np.dot(Xtest, w)+b - ytest ) / len(TEST)

26

27 print('Train error = ', train_error)

28 print('Test error = ', test_error)

Solution:

The error is at the beginning of the program on lines 4 and 5. Notice how µ is a function of both the train and
test data. By de-meaning the entire dataset before splitting, we are intertwining the train and test data. The
correct procedure is:

• Split into train and test

• Compute the mean of the train data, µtrain

• De-mean both the train and test data with µtrain
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2.2. Program 2

1 # Given dataset of 1000-by-50 feature

2 # matrix X, and 1000-by-1 labels vector

3

4 def fit(Xin, Yin):

5 mu = np.mean(Xin, axis=0)

6 Xin = Xin - mu

7 w = np.linalg.solve(np.dot(Xin.T, Xin), np.dot(Xin.T, Yin))

8 b = np.mean(Yin) - np.dot(w, mu)

9 return w, b

10

11 def predict(w, b, Xin):

12 return np.dot(Xin, w) + b

13

14 idx = np.random.permutation(1000)

15 TRAIN = idx[0:800]

16 VAL = idx[800:900]

17 TEST = idx[900::]

18

19 ytrain = y[TRAIN]

20 Xtrain = X[TRAIN, :]

21 yval = y[VAL]

22 Xval = X[VAL, :]

23

24 err = np.zeros(50)

25

26 # use cross validation to pick the best features to use

27 for d in range(1,51):

28 w, b = fit(Xtrain[:, 0:d], ytrain)

29 yval_hat = predict(w, b, Xval[:,0:d])

30 err[d-1] = np.mean((yval_hat - yval)**2)

31

32 d_best = np.argmin(err) + 1

33

34 Xtot = np.concatenate((Xtrain, Xval), axis=0)

35 ytot = np.concatenate((ytrain, yval), axis=0)

36

37 w, b = fit(Xtot[:, 0:d_best], ytot)

38

39 ytest = y[TEST]

40 Xtest = X[TEST, :]

41

42 ytot_hat = predict(w, b, Xtot[:, 0:d_best])

43 tot_train_error = np.mean((ytot_hat - ytot) **2)

44 ytest_hat = predict(w, b, Xtest[:, 0:d_best])

45 test_error = np.mean((ytest_hat - ytot) **2)

46

47 print('Train error = ', train_error)

48 print('Test error = ', test_error)

Solution:

The answer here is subtle. You may notice that we pick our hyperparameter (d) using our validation set, but
then we combine the train and validation sets to get our final w and b. Since the hyperparameter here is just
the dimension we are using, the performance of the combined datasets (with dbest) should be better than if we
just trained on the train set (with dbest).
This isn’t always the case. Consider picking λ for the amount of regularization.
In general, models get better the more data you give them, but only add the validation set back in if you are
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confident the hyperparameter doesn’t depend on the number of elements, and that you aren’t allowing your
model access to the test set.
Since neither of these processes touch the test set, it is still an unbiased estimate of the true error.
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