
1. Stein’s Paradox

In this problem, we’ll use bias-variance tradeoff to find a non-obvious way of estimating the mean of unrelated
distributions.

So far in class, we’ve always been trying to learn a function – given a bunch of features, understand how they predict
the single-number output. In this problem, we’re trying to do something a little different. We have n completely
unrelated probability distributions. We’re going to get one sample from each of the distributions, and attempt
to predict each of their means. For some examples, our distributions might be: high temperature in Chicago on
January 1st, low temperature in Seattle on December 1st, and your friend’s score on the midterm.

More formally, let θ ∈ Rn be the (unknown) true means of our n distributions. We will get a vector X where
each Xi ∼ N (θi, σ

2). We’re assuming that every distribution has the same variance, but our means could be very

different. Our job is to report θ̂ to minimize our expected error: E
[
||θ̂ − θ||22

]
.

1.1. The Natural Estimator

The most natural estimator is to just guessX (i.e. set θ̂ = X). It doesn’t seem like we have any other viable strategy.
We’ll use bias-variance tradeoff to show that there’s actually a better estimator.

(a) Split the error into bias2 and variance. I.e. show

E[||θ̂ − θ||22] = ||E[θ̂]− θ||22 + E[||θ̂ − E[θ̂]||22]

Hint: add and subtract E[θ̂].

(b) What is the variance of the estimator θ̂ = X? Hint: Remember that for a random variable Z, Var(Z) =
E[(Z − E[Z])2]

(c) What is the bias2 of the estimator θ̂ = X?

1.2. A Different Estimator

The Bias-Variance Tradeoff says that since our error is just the sum of the bias2 and the variance, if we can find a
way to “tradeoff” bias for variance, we can affect our error. With our previous estimator, the two sources of error
are quite imbalanced. None of our error is from bias, it all comes from variance. Can we think of a way to reduce
variance (even if it means increasing the bias)?

Normally, the way we would reduce variance would be to sample the random variables again and take the average
of the samples. But we can’t do that for this problem (it would take us a whole year to get another high temperature
on January 1st). Another way to decrease the variance is to “scale down” the random variable. E.g. say we’ll have
9
10 of our estimator come from the random object, and the remaining 1

10 come from somewhere else. What else can
we use? Let’s just use 0. This kind of estimator is sometimes called a “shrinkage estimator” because we’re pulling
the results toward 0.

Our estimator is going to be 9
10X. We’ve certainly decreased the variance. But that should sound crazy – we’re

biasing ourselves. We’re intentionally guessing something we know is a biased estimator. But our hope is that we
will decrease the variance enough to more than cancel out the increase in bias. Let’s see.

(a) We’ve changed the estimator, does the error still break down neatly into bias and variance? Or do we have to
change some math from part a of the last question?

(b) What is the variance of the estimator θ̂ = 9
10X ?

(c) What is the bias2 of the estimator θ̂ = 9
10X?
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(d) Suppose you know that the variance of our samples is quite a bit. Specifically assume σ2 > 1/10θ2i for all i.
(For the temperature examples we gave, this is pretty reasonable. At least if we use Celsius temperatures. The
average Celsius high in Chicago is about 4 degrees, so a variance of about 1.6 degrees Celsius suffices) Have
we improved the estimator?

1.3. Thinking More about the Estimators

The estimator we came up with in the last problem is unintuitive for more reasons than we’ve already seen. Suppose
we scaled all our data points (i.e. instead of X we got aX + b), e.g. we were expecting to get our data in Celsius,
but it came to us in Fahrenheit. We would expect that scaling our old estimate, i.e. now reporting aθ̂ + b would
give us the same answer as if we did our estimate afresh knowing we were getting data in Fahrenheit.

(a) Is the “natural estimator” scale invariant?

(b) Is the “shrinkage estimator” 9
10X scale invariant?

It turns out we can do even better than estimating 9
10X– our idea was to shrink X toward 0 by a constant ratio (i.e.

multiply everything by 9/10). If we instead shrink it in a way that depends on σ2 and ||X||22, we’ll be able to come
up with an estimator that has less error than X, regardless of the relationship between σ2 and θ.

The “James-Stein Estimator, θ̂ =
(
1− (n−2)σ2

||X||22

)
X, always has less error than X.

1.4. A Harder Calculation

Want more practice with bias-variance tradeoff? Here’s another version of Stein’s Paradox. Instead of shrinking
toward 0, shrink toward X, the mean of all of your data points, i.e. X = 1

n

∑n
i=1 Xi. If your data points are

coming from similar sources (say each θi is a different baseball player’s true batting average), you can think of this
as reflecting a belief that all the means should be generally similar. (Though this shrinking still works even if the
sources are very different, and the result is still counter-intuitive). Let 1 be the n× 1 vector of all 1’s, and let λ be a
real number between 0 and 1. In this problem we’ll find the way to choose λ to make θ̂ = (1− λ)X + λX1 as good
of an estimator as possible.

(a) What is the variance of the estimator θ̂ = (1− λ)X + λX1 ?

(b) What is the bias2 of the estimator?

(c) What value of λ will result in the best estimator?
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2. Biased Test Error

Is the test error unbiased for these programs? If not, how can we fix the code so it is?

2.1. Program 1

1 # Given dataset of 1000-by-50 feature

2 # matrix X, and 1000-by-1 labels vector

3

4 mu = np.mean(X, axis=0)

5 X = X - mu

6

7 idx = np.random.permutation(1000)

8 TRAIN = idx[0:900]

9 TEST = idx[900::]

10

11 ytrain = y[TRAIN]

12 Xtrain = X[TRAIN, :]

13

14 # solve for argmin_w ||Xtrain*w - ytrain||_2

15 w = np.linalg.solve(np.dot(Xtrain.T, Xtrain), np.dot(Xtrain.T, ytrain))

16

17 b = np.mean(ytrain)

18

19 ytest = y[TEST]

20 Xtest = X[TEST, :]

21

22 train_error = np.dot(np.dot(Xtrain, w)+b - ytrain,

23 np.dot(Xtrain, w)+b - ytrain ) / len(TRAIN)

24 test_error = np.dot(np.dot(Xtest, w)+b - ytest,

25 np.dot(Xtest, w)+b - ytest ) / len(TEST)

26

27 print('Train error = ', train_error)

28 print('Test error = ', test_error)
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2.2. Program 2

1 # Given dataset of 1000-by-50 feature

2 # matrix X, and 1000-by-1 labels vector

3

4 def fit(Xin, Yin):

5 mu = np.mean(Xin, axis=0)

6 Xin = Xin - mu

7 w = np.linalg.solve(np.dot(Xin.T, Xin), np.dot(Xin.T, Yin))

8 b = np.mean(Yin) - np.dot(w, mu)

9 return w, b

10

11 def predict(w, b, Xin):

12 return np.dot(Xin, w) + b

13

14 idx = np.random.permutation(1000)

15 TRAIN = idx[0:800]

16 VAL = idx[800:900]

17 TEST = idx[900::]

18

19 ytrain = y[TRAIN]

20 Xtrain = X[TRAIN, :]

21 yval = y[VAL]

22 Xval = X[VAL, :]

23

24 err = np.zeros(50)

25

26 # use cross validation to pick the best features to use

27 for d in range(1,51):

28 w, b = fit(Xtrain[:, 0:d], ytrain)

29 yval_hat = predict(w, b, Xval[:,0:d])

30 err[d-1] = np.mean((yval_hat - yval)**2)

31

32 d_best = np.argmin(err) + 1

33

34 Xtot = np.concatenate((Xtrain, Xval), axis=0)

35 ytot = np.concatenate((ytrain, yval), axis=0)

36

37 w, b = fit(Xtot[:, 0:d_best], ytot)

38

39 ytest = y[TEST]

40 Xtest = X[TEST, :]

41

42 ytot_hat = predict(w, b, Xtot[:, 0:d_best])

43 tot_train_error = np.mean((ytot_hat - ytot) **2)

44 ytest_hat = predict(w, b, Xtest[:, 0:d_best])

45 test_error = np.mean((ytest_hat - ytot) **2)

46

47 print('Train error = ', train_error)

48 print('Test error = ', test_error)
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