
Section 10: Solutions

1. Kernels

Let φ : d→ k be a feature map, and define K to be the kernel matrix of φ.

(a) Prove that the kernel matrix is symmetric. That is, show Ki,j = Kj,i.

Solution:

Let φ(xi) and φ(xj) be the featuremaps for xi and xj , respectively. ThenKi,j = φ(xi)
Tφ(xj) = φ(xj)

Tφ(xi) =
Kj,i

(b) Show that K is positive semi-definite
Hint: consider the matrix B where the ith column of B is φ(xi).

Solution:

Recall that Ki,j = φ(xi)
Tφ(xj). Observe that K = BTB, as (BTB)i,j = φ(xi)

Tφ(xj). Now consider an
arbitrary vector y. To show K is PSD it suffices to show yTKy is non-negative. We have:

yTKy = yTBTBy = (By)T (By) = ||By||22 ≥ 0

2. PCA

Consider the following data set, represented as three points in R2. Note: in this problem we will not demean the
dataset. Perform all calculations as if the dataset were 0 mean. 1 2

1.5 3
6 12


(a) What is the first principal component vector, v1?

Solution:

Each point has second coordinate twice the first, so every point is on the line y = 2x, or equivalently is a
multiple of the vector [1, 2].

That direction, normalized, is the first principal component, so v1 = [1/
√
5, 2/
√
5].

(b) What is the second principal component, v2?

Solution:

Since there is no data not in the span of the first principal component, any unit norm vector perpendicular
to v1 is an acceptable choice. One such vector is [−2

√
5, 1/
√
5].

(c) If we use only the first principal component to compress the dataset, what will the representation of each
point be?
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Solution:

The first point is
√
5v1, The second is 1.5 ·

√
5v1, The third is 6 ·

√
5v1.

(d) Will this representation be lossy, or perfectly preserve the data?

Solution:

On this particular dataset, we have lost no information (the points are all multiples of v1).

Answer the same questions for the following, slightly larger dataset:
1 1
1.5 1.5
−2 2
4 −4
6 −6
2 2


(a) What is the first principal component vector, v1? Solution:

Notice that every point is either a multiple of [1, 1] or [1,−1], so one of those must be our principal com-
ponent. The norms of the multiples of [1,−1] are much larger, so [1/

√
2,−1/

√
2] is v1.

(b) What is the second principal component, v2?

Solution:

We need a vector perpendicular to v1, that best describes our remaining data. Since we’re in two dimen-
sions, we don’t have choices (beyond negating the vector) [1/

√
2, 1/
√
2].

(c) If we use only the first principal component to compress the dataset, what will the representation of each
point be?

Solution:

Data points 1, 2, and 6 are all perpendicular to v1, so are represented as [0, 0] (i.e. 0 · v1). The other points
are multiples of v1: −2

√
2v1, 4

√
2v1, and 6

√
2v1.

(d) Will this representation be lossy, or perfectly preserve the data?

Solution:

Lossy – points 1,2, and 6 have lost information.

In Lecture 17, we saw the following optimization problem in the context of autoencoders:

min
f,g

n∑
i=1

||xi − g(f(xi))||22

Suppose we know that f(x) = Ax for some matrix A ∈ Rn×d and g(y) = By for some matrix B ∈ Rd×n.

(a) How could you calculate A,B? Solution:
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Our form is to minimize
∑n

i=1 ||xi −BAxi||22
So we are looking for rank at most d matrices whose product preserves the xi well (notice that since the
xi are in n dimensions, there may not be a way to preserve all the data perfectly). The best d directions
to preserve the matrix A are exactly the top d directions in the SVD, or equivalently the top d principal
components.

(b) In the special case that d = n what happens?

Solution:

If d = n then BA can be a full-rank (i.e. rank n) matrix. In particular, BA could be In. Any inverse
matrices will create 0 error in the minimization (in particular we could take the full SVD here, though the
solutions is no longer unique in this context.)

3. SVD

We will now explore SVD to transform matrices into another form. Recall that we can decompose any matrix by
SVD into 3 components USV T where matrices U and V T are othornornal square matrices and S is a rectangular
diagonal matrix.

Here we will use an example from lecture on kernels (Lecture 12). In that lecture we considered the optimization
problem

argmin
w

n∑
i=1

(yi − φ(xi)
Tw)2 + λ||w||22

, and we said that both of the following expressions were closed forms for the optimum ŵ:

ŵ = (ΦTΦ+ λIp)
−1ΦT y

and
ŵ = ΦT (ΦΦT + λIn)

−1y

Let USV T be the SVD decomposition of Φ. Using the second of those two expressions, show ŵ = V ST (SST +
λI)−1UT y. (This exercise is the first step in the proof that those two forms are equivalent – to complete the proof
you would show the other expression can also be rewritten in this form).

Solution:

ŵ = ΦT (ΦΦT + λIn)
−1y

= ΦT (USV TV STUT + λIn)
−1y Φ = USV T

= ΦT (USV TV STUT + λUUT )−1y In = UUT

= ΦT (U(SV TV ST + λU)UT )−1y Factorization

= V STUTU(SST + λIn)
−1UT y U−1 = UT

= V ST (SST + λIn)
−1UT y UTU = I
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4. More SVD, Gaussians

LetΣ be a 2×2matrix with eigenvalues v1 = [1/2,
√
3/2]T with eigenvalue 3 and v2 = [−

√
3/2, 1/2]T with eigenvalue

2.

(a) Give an expression for Σ (Hint: look at the title of this section)

Solution:

We know what the SVD of Σ would be, so we can use that to find Σ:

[
1/2 −

√
3/2√

3/2 1/2

] [
3 0
0 2

] [
1/2

√
3/2

−
√
3/2 1/2

]
=

[
9/4

√
3/4√

3/4 11/4

]

(b) Let Σ1/2 be the matrix such that Σ1/2Σ1/2 = Σ. Give an expression for Σ1/2. Do not try to simplify your
expression.

Solution:

It’s not too hard to see that Σ1/2 must have the same eigenvectors as Σ.

Let v be an eigenvector of Σ with eigenvalue λ. Note that Σ1/2Σ1/2v = λv So if α is the eigenvalue
associated with v for Σ1/2, we have Σ1/2Σ1/2v = Σ1/2αv = α2v = λv. So the eigenvalues are just the
squareroot of those for Σ.

Thus Σ1/2 is: [
1/2 −

√
3/2√

3/2 1/2

] [√
3 0

0
√
2

] [
1/2

√
3/2

−
√
3/2 1/2

]

(c) Recall that the density of a multivariate Gaussian with mean µ and covariance Σ is:

P (x) =
1

2π
√
|Σ|

exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
Where |.| is the determinant operator. Let E be the set of all points where the density is e−3/2/(2

√
6π), i.e.

E = {x|P (x) = e−3/2/(2
√
6π)} (E is an “isocontour”). Derive a simple formula for E (where µ is unknown,

but Σ is the matrix from the first part). Leave your answer in terms of µ and Σ.

Solution:

Start by noticing that |Σ| is 6 (you could figure this out by recalling that the determinant is always the
product of the eigenvalues, by remembering that U only rotates so |Σ| = |S| or by doing a full calculation)

Thus both the density and the right hand side have a denominator of 2
√
6π so we need to solve:

exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
= e−3/2

So we have
(x− µ)TΣ−1(x− µ) = 3

(d) Consider the distribution N (µ,Σ) with µ = [0, 1]T and Σ being the matrix from part a. Draw the contour you
described in the previous part. Hint: you should only need to think about the eigenvectors and eigenvalues
of Σ to figure out what to draw.

The numbers defining E are not nice enough to graph by hand; it’s enough to figure out its shape and the
formulas for enough important points to make a plot.
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Solution:

Since µ is just going to translate the drawing, let’s first figure out the drawing when µ = [0, 0]T and
translate it. We now need to find vectors x such that xTΣ−1x = 3. We know that the isocontours of
the Gaussian distribution (the curves where the density has the same value) form ellipses, with the axes
of the ellipse being the eigenvectors of the covariance. So it suffices to figure out what multiples of the
eigenvectors are on the contour.

i.e. there’s some α such that αv1 is on the contour, and we want to find α.

(αv1)
TΣ−1(αv1) = (αv1)

T
(α
3
v1

)
=

α2

3
||v1||2

=
α2

3

So we have α2/3 = 3 and α = 3.

Thus the vector 3v1 = [3/2, 3
√
3/2]T is on the ellipse centered at 0.

A similar calculation for v2 gives
√
6v2 = [−

√
18/2,

√
6/2]T

We can now account for µ, by simply shifting the entire drawing by [0, 1]T , so we have: [3/2, 3
√
3/2+ 1]T

and [−
√
18/2,

√
6/2 + 1]T on the ellipse, now centered at [0, 1]T .

The drawing looks like this:

Neither of these matrices can the be the covariance of a Gaussian. For each, give a reason why it’s not.

(a)
[
3 4
4 −1

]
Solution:

The diagonal of the covariance matrix has the variances of the individual variables. Variances cannot be
negative.

(b)
[
1 1
2 0

]
Solution:

A covariance matrix is always symmetric (since entry i, j and entry j, i are both the covariance of dimen-
sions i and j).

In section we proved directly that for any matrix A, AAT is positive semi-definite. Use the SVD of A to show the
same result. Solution:
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IfA = USV T thenAAT = USV TV SUT = US2UT . A symmetric matrix is PSD if and only if all of its eigenvalues
are non-negative. The eigenvalues of AAT are exactly the diagonal entries of S2, and these are definitely non-
negative (since they are squares of the entries of S).

5. EM

Suppose that Kevin and Anna assign grades as follows: With probability 0.5 you get a 4.0, with probability µ you
get a 3.7, with probability 2µ you get a 3.4 and with probability 0.5−3µ you get a 3.0. (µ is assumed to be between
0 and 1/6.)

(a) You wish to find the maximum likelihood estimate of µ from data. You somehow managed to get ahold of
some data and found out that a 4.0’s were assigned, b 3.7’s were assigned, c 3.4’s were assigned and d 3.0’s
were assigned. What is the MLE of µ given a, b, c, d?

Solution:

The likelihood of the grades seen is: (.5)a ·µb ·(2µ)c ·(.5−3µ)d. Since we have exponents andmultiplication,
it will be easier to deal with the log-likelihood:

a log(1/2) + b log(µ) + c log(2µ) + d log(.5− 3µ)

Set the derivative equal to 0 and solve:

b

µ
+

c

µ
+
−3d

.5− 3µ
= 0

b+ c
−3dµ

1/2− 3µ
= 0

(1/2− 3µ)(b+ c)− 3dµ = 0

b

2
+

c

2
− 3bµ− 3cµ− 3dµ = 0

b+ c

2
= 3µ(b+ c+ d)

b+ c

6(b+ c+ d)
= µ

(b) Now suppose that instead some information is hidden. Specifically, you are told c and d (the number of 3.4’s
and 3.0’s), but you only know h which is the combined number of 4.0’s and 3.7s. Describe how you would
use EM to solve for µ by filling in the following:

E step: if you knew the value of µ, you could compute the expected value of a and b.

M step: If you knew the expected values of a and b, you could compute the MLE of µ.

Solution:

Expectation step: We need to find the expectation of a and b given µ. We know that in expectation a has
1/2 of the total mass and b has µ of it. Since we know a and b combine to h we can apply Baye’s Rule to
get: â = 1/2

1/2+µh b̂ = µ
1/2+µh

Maximization Step: We can just use the MLE we’ve already calculated. µ = b+c
6(b+c+d)
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6. Clustering Methods

You want to cluster your data into 2 clusters. For each of the following datasets, which of k-means and EM for
Gaussian Mixture Models would provide a faithful representation? Answer k-means, GMM, Both, Neither.

(a)

Solution:

GMM. k-means will fail badly here – since the clusters overlap heavily and are only differentiated by
their orientation, k-means will be be able to find the center of each cluster, but since those centers are
(essentially) on top of each other, we won’t be able to differentiate between the clusters.

The mixture model can identify “directions” in the data so will be able to separate the extreme points
accurately (though it won’t be able to accurately classify the points near the center.

(b)

Solution:

Both will accurately classify the points.

7. Linear Regression

7.1. Regularization

You’re running linear regression to predict from one-dimensional feature vectors. Your training set consists of
the points (2, 2), (4, 4), (2, 1) (where the first entry is the feature, and the second entry is the value to be pre-
dicted).

You are going to learn w and b, and use the predictor y = wx+b (note that we don’t need a transpose on w, because
it is actually a single number, not a vector like usual).

You are deciding on a regularization strategy. You try each of the following regularizers:

(a) no regularization

(b) w2 + b2

(c) 5(w2 + b2)

(d) |w|+ |b|
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You solve all four regression problems and get the following set of predictors:

(I) w = 1.190, b = 0.434

(III)w = 1.333, b = 0.583

(II) w = 1.5625, b = 0.000

(IV) w = 1.250, b = 1.000

Answer the following questions:

(a) Match each of your regularization strategies to the predictor it created.

Solution:

We’ll use process of elimination to match these up. The easiest to identify is L1 regularization. We expect
L1 to lead to sparse solutions, and there is one sparse image: image II.

The remaining three strategies can be thought of as all doing L2 regularization, with λ being 0, 1, or 5.
We can order the predictors in terms of how much of a regularization penalty they incur to choose these:

image IV has the largest parameters, so involves no regularization.

image III is in the middle, so corresponds to λ = 1 L2-regularization.

image I has the smallest parameters, so we expect it to correspond to strategy 3 (λ = 5, L2-regularization).

(b) Usually we do not regularize by b. Explain why this is usually not a good idea.

Solution:

b is just an offset – it corresponds to where the mean of our data is. The goal of regularization is to decide
keep our model simple (by either ensuring our parameters don’t get too large or by selecting the features
we think are more important), but that goal is not met when we force our predictor not to go through the
mean of our data.

7.2. Midterm Redux: Closed Form

Wewill revisit the midterm problem of deriving a closed form for least squares when the errors for each sample have
different (known) variances. Recall from the midterm that we are trying to minimize the negative log likelihood
function of

n∑
i=1

(yi − xT
i w)

2

2σ2
i
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where xi, w ∈ Rd×1 and X ∈ Rn×d, Y ∈ Rn×1

Write the gradient of this function with respect to w. Solution:

∇w = −
n∑

i=1

xi(yi − xT
i w)

σ2
i

Find a closed form of the bestw (youwill need to convert tomatrix form to do this easily). Solution:

Now to convert this intro matrix form, let us try to think in numpy land. Since we know that ∇w will be
formed from the summations of each xi with its corresponding (yi−xT

i w)

σ2
i

, therefore, we can try to write that
out first. Note that we can denote that as (Y− Xw), where each element of the resulting vector corresponds to

(yi − xT
i w). To get each element into (yi−xT

i w)

σ2
i

, we can then do (Y− Xw)TS−1, now each element in the vector

corresponds to (yi−xT
i w)

σ2
i

. Recall that ∇w is formed by multipying each xi with the corresponding (yi−xT
i w)

σ2
i

and

summing them up together. Therefore, we need a way to multiply each element in the vector (Y − Xw)TS−1

with the corresponding xi, and it turns out we can do that by (Y − Xw)TS−1X. However this resulting vector
doesn’t fit the same shape as the ∇w we want, therefore we can simply transpose it. −((Y − Xw)TS−1X)T =
−XTS−1(Y− Xw) = 0. Now we can simply solve by algebra,

−XTS−1(Y− Xw) = 0

−XTS−1Y + XTS−1Xw = 0

XTS−1Xw = XTS−1Y

ŵ = (XTS−1X)−1XTS−1Y

7.3. Alternative Noise Model

Recall that if we assume Gaussian noise on the labels then the MLE of our estimator w is one that minimizes the
residual sum of squares

∑n
i=1(yi − xT

i w)
2.

Instead, let’s model the noise as a Laplace distribution. The PDF of Laplace(µ, b) is

P (y|µ, b) = 1

2b
exp

(
−|y − µ|

b

)
(a) Write the likelihood function for the dataset given training data {(xi, yi)}ni=1

Solution:

n∏
i=1

P (yi|xi) =

n∏
i=1

1

2b
exp

(
−|yi − wTxi|

b

)

(b) Write the negative log-likelihood and show the MLE is the w that minimizes the sum of absolute residuals

n∑
i=1

|yi − xT
i w|

Solution:
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The negative log likelihood can be written as:

− log

(
n∏

i=1

1

2b
exp

(
−|yi − wTxi|

b

))
= −

n∑
i=1

log
(

1

2b
exp

(
−|yi − wTxi|

b

))

= n log(2b) +
1

b

n∑
i=1

|yi − wTxi|

Dropping constants, minimizing the negative log likelihood is equivilent to minimizing
∑n

i=1 |yi−wTxi|.

(c) Write the gradient descent update rule for minimizing the sum of absolute residuals.

Solution:

The gradient of the nll function can be taken as:

∇w

n∑
i=1

|yi − wTxi| =
n∑

i=1

{
−xi yi − wTxi ≥ 0

xi yi − wTxi < 0

so the gradient descent update rule with step size η is

w ← w − η

n∑
i=1

{
−xi yi − wTxi ≥ 0

xi yi − wTxi < 0

(d) Why might we want to use this noise model instead of Gaussian noise? Solution:

The sum of absolute residuals is less sensitive to outliers than the residual sum of squares.

8. SVMs

This problem relies on a very specific definition of “support vector” that we have not discussed in class, so
you do not need to worry about it.

Consider the dataset consisting of 7 data points, 4 with positive labels {0, 1, 2, 3}, and 3 with negative labels
{−3,−2,−1}. Suppose we want to learn a linear SVM with slack variables for this dataset. Recall we can for-
malize this as a constrained optimization problem:

min
w,b,ξ
||w||2 + C

∑
i

ξi

subject to

yi(w · xi + b) ≥ 1− ξi ∀i
ξi ≥ 0 ∀i

where C is a regularization parameter that balances the size of the margin (smaller ||w||2) vs. the violation of the
margin (smaller

∑
i ξi).
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Figure 1: Dataset

Also recall that a support vector is a datapoint that lies on a margin.

(a) If C = 0, which means we only care about the size of the margin, how many support vectors do we have?
Solution:

7, if we just want to minimize ||w||2, then we will vary b and ξi so all of the constraints are satisfied. As
||w|| → 0, we only have to satisfy yib ≥ 1 − ξi and ξi ≥ 0 ∀i. These constraints can all be satisfied with
ξi ∈ {0, 2} and b = 1, letting all of the vectors be support vectors.

(b) If C → ∞, which means we only care about the violation of the margin, how many support vectors do we
have? Solution:

2, if C → ∞, then we just care about minimizing
∑

i ξi. That is done when we have only one margin
between the two classes at −0.5 with two defining support vectors −1 and 0.

9. Optimization Basics

(a) Why dowe use the word “convex” to refer to both convex sets and convex functions (i.e. why are they related?)

Solution:

Two reasons: First a function can only be convex if its domain is a convex set (one of the ways we defined
“convex function” was that if we draw a secant line between two points on the function, the line is always
above the function. That process doesn’t make sense if the function isn’t convex.)

Second there are close connections between the two objects, for example the set of all points above a
convex function are a convex set.

(b) We’ve talked about convex sets of points in Rn, but we can talk about convex subsets of other spaces. Instead
of considering subsets of Rn, let’s consider subsets of Rn×n. I.e. instead of sets of points, we now have sets of
matrices. In this ambient space, is the set of symmetric matrices a convex set?

Solution:

It is! Let’s first understand what we mean. By definition, we need to be able to take any two symmetric
matrices,A,B, and ensure that any “point” (i.e. matrix) on the “line” (i.e. convex combination) connecting
them is still symmetric. Let’s see if that’s true.

Formally what we need to show is that for any λ ∈ [0, 1]: C = λA+ (1− λ)B is still symmetric.

What’s entry Ci,j? λAi,j + (1 − λ)Bi,j and Cj,i? λAj,i + (1 − λ)Bj,i = λAi,j + (1 − λ)Bi,j = Ci,j so it is
symmetric! Thus the set is convex.

(c) For each of the following, either give a one-sentence explanation for why the statement is true, or a counter-
example.
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• If f and g are convex functions, then f + g is a convex function.

Solution:

This is true, you proved it on your homework. An easy proof is to notice that the derivative of f + g
is f ′ + g′ so the derivative is still below the function.

• If f + g is a convex function, then f and g are both convex functions.

Solution:

This is false, for example f = x2 − x3 is not convex, but for g(x) = x3, f + g = x2 is convex.

• If A is a convex set then A ∩B is convex for any set B.

Solution:

This is false in general – take B to be any non-convex subset of A, then A ∩ B = B, which is not
convex by assumption. On the other hand, if B is convex, then A ∩ B is convex (we showed this in
section).

• If A and B are convex and A ∩B 6= ∅ then A ∪B is a convex set.

Solution:

This is false, for example, take two circles of radius 1, with centers at (0, 0) and (1/2, 0). They defi-
nitely overlap, but (for example) the line connecting the points (0, 1) and (1/2, 1) leaves the union of
the circles.

10. Neural Networks

Consider the convolutional neural network architecture:

In the first layer, we have a one-dimensional convolutionwith a single filter of size 3 such that hi = σ(
∑3

j=1 vjxi+j−1).
The second layer is fully connected, such that z =

∑4
i=1 wihi. The hidden units’ activation function σ(x) is the sig-

moid function. The output unit is linear. We perform gradient descent on the loss function L = (y− z)2 where y is
the training label for x.
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(a) How many parameters does this network have? Recall that convolutional layers share weights. There are no
bias terms.

Solution:

There are 7 parameters, 3 in the first layer and 4 in the second.

(b) Why might we use convolutions?

Solution:

We use convolutions to capture local structure in our data. Convolutions also allow us to use fewer pa-
rameters as they share weights across the entire input.

Consider the neural network defined as g(x) = W2f(W1x). Where f is an activation function, W1 ∈ Rh×d,
W2 ∈ R1×h. Let us consider minimizing the square loss for a regression task.

(c) Let f(x) = tanh(x). Is the loss function convex in the model parameters?

Solution:

No, the nonlinearities make it so the loss function is non-convex. This means that we are not guaranteed
to find the global minimum, or a minimum at all (we could end up at a saddle point).

(d) Let f(x) = x. What types of functions can we represent using this model?

Solution:

If f(x) = x, then we can simplify our model to g(x) = Ax where A = W2W1. This means (no matter how
big we make h) we can only represent linear functions.

11. Multiple Choice T/F and Short Answer

(a) Let X have the following Singular Value Decomposition: X = USV T . For each of the follow matrices, state
whether or not the columns of U are the eigenvectors of that matrix.

• XTX

Solution:

No. XTX = (V SUT )(USV T ) = V S2V T so V is the set of eigenvectors, not U .

• XTXXTX

Solution:

No. Repeating the calculation from the previous part, we get that this matrix is V S4V T .

• XXT

Solution:
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XXT = USV TV STUT

= USSTUT

= US2UT

• XXTXXT

Solution:

XXTXXT = USV T (USV T )T (USV T )(USV T )T

= USV TV STUTUSV TV STUT V V T = UUT = I

= USSTSSTUT

= US4UT

(b) Which of the following are reasons why PCA useful for doing preprocessing steps on data? Please provide
justification
a) Reduce overfitting of data
b) Increase computational efficiency during training
c) Extract more features/information about your training data

Solution:

A and B. For A, we can reduce overfitting of data by extracting the k most important directions in our data,
and forcing the algorithm to ignore the noise in the data. When we do PCA, our dimensions essentially
reduces thereby increasing our training efficiency. PCA does not create extra features in our data. It only
identifies important linear combinations of existing ones.

(c) Let us consider a matrix X =
∑r

i=1 siuiv
T
i . What are the possible values for the rank for this matrix?

Solution:

Any integer from 0 to r (inclusive) is possible. Note that we cannot have rank more than r since there are
only r many vectors. The lower bound is 0 if si is 0 for all i, and we can get any number in-between by
repeating some of the u, v vectors (or setting some si to 0).

(d) Which of the following are true statements for k-nearest neighbors as we increase k?
a) The decision boundary becomes smoother
b) Variance decreases
c) As the number of sample points approaches infinity, error rate becomes less than twice the Bayes error for
1-nearest neighbors.
d) Bias decreases

Solution:

A is true – as k increases, we can “ignore” more and more points that are opposite of those nearby, and
thereby smooth out the boundary (As an example, suppose you have a single positive point surrounded
by negative points. For 1-NN, we will classify positively close to that single positive point. For 3-NN, we
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will classify negatively everywhere around that positive point).
B is true the variance decreases and bias increases. This is easiest to see in extreme cases, for k the number
of data points, we classify all points the same (low variance, but very high bias)
C is true (this is just a fact stated in lecture.
D is false (see the explanation in B).

(e) In lecture we have shown that low-rank approximation of matrix is helpful for many reasons. Which of the
following are the reason to use a low-rank appoximation of your data matrix?
a) Denoising
b) Discover latent categories in data
c) Filling in unknown values
d) Storage Compression
Solution:

All of the above. We have shown in lecture all of the above uses of SVD. For denoising, we saw that we
can reconstruct the data points with reduced noise by taking the first k components principal components
(which we can find via SVD). We also saw an example of discovering latent categories in data through the
DNA example we saw in Lecture 13. We also walked through an example of filling in unknown values, i.e.
matrix completions in lecture (and you’re doing it on HW4). Finally, we talked about eigenface in lecture,
which is an example of compression (and you compressed data via SVD earlier in this handout).

(f) What is the leave one out cross-validation error when using an SVM for classification on the following example?
(In this case, error will simply be the number of mistakes.) The SVM decision boundary and margin on either
side are shown.

Solution:

0, removing any one point does not change the optimal hyperplane, so the decision boundary will not
change and the LOOCV error will remain the same.

(g) What is the minimal number of points we can remove required to change the decision boundary?

Solution:

3 points. Since there are 3 data points that lie on each boundary, removing one point or two points
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leaves two or one points, respectively that still define the margin. If we remove three points, the decision
boundary changes.

(h) There are several ways to formulate the hard margin SVM. Consider a formulation where we try to directly
maximize the margin γ. The training samples are x1, . . . , xn and their labels are y1, . . . , yn. Circle all the
constraints we should impose to get a correct SVM. Maximize γ subject to

(i) yixT
i w ≤ γ ∀i

(ii) yixT
i w ≥ γ ∀i

(iii) ||w|| ≥ 1

(iv) ||w|| = 1

Solution:

We should maximize γ subject to (ii) and (iv).

12. Matchup

Here’s a sample of some of the techniques we’ve seen in this course:

(a) Bootstrap

(b) EM Algorithm

(c) PCA/SVD

(d) Kernelization

(e) cross-validation

For each of the following scenarios, choose the most appropriate of the above techniques.

(a) You have a large number of features, and want to find the most important linear combinations of your features.

Solution:

We’ve seen a few ways to find important features, but PCA/SVD is the most appropriate one on this list,
since we care about linear combinations of the features.

(b) You think your linear model would work best if you applied a feature map, but it would be infeasible to
calculate all the entries of the map.

Solution:

When we only care about dot-products of the feature maps, we can use Kernelization to avoid calculating
the full feature map.

(c) You’re worried your model has too much variance, and want to estimate how much your predictions would
change if you got a different training set.

Solution:

Bootstrap is a way of estimating a confidence interval around your predictions as a result of the random-
ness of the training set. This is exactly trying to understand the variance of your model.
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(d) Your model uses α and β. The best α depends on the best β and the best β depends on the best α. You can’t
find a closed form that lets you find both α and β simultaneously, but given some β̂ you can find the best α̂
and vice-versa. How do we find α, β?

Solution:

In an instance such as this, we can find good α and β using the EM Algorithm, though we usually don’t
have a guarantee of finding the best ones.

(e) Your model uses α and β. You aren’t interested in finding the best α for the training set, but in finding one
that will allow for better generalization. How do we find α?

Solution:

α is a hyperparameter. We would really like to choose an α by looking at what generalizes the best to new
data, but we can’t use our test set to find the best α. The closest we can get is Cross-validation.

13. Midterm Matchup Redux

This problem is copy-pasted from the midterm. The solutions will have a detailed breakdown of this question; you
may want to try it again to see what you remember from the first half of the course.

Suppose you are doing regression and discover that your learning algorithm is not working as well as you think it
should be. To fix the problem, some things you could try are the following:

(a) Get a hold of a larger training set.

(b) Add additional functions to your hypothesis class (e.g., switch from linear functions to cubic polynomials.)

(c) Try using a simpler hypothesis class

(d) Change the feature map

(e) Try changing the optimization algorithm used.

(f) Try L2 regularization

(g) Try L1 regularization

For each of the following specific issues, which of the above approaches has the potential to help?

For each of these problems, if there are two or more strategies that will help, list the two that you think are
most likely to help. If there is only one strategy that will help, list it. If there are none, write ”none”.

To make the following discussion concrete, let’s consider the bias-variance decomposition for squared loss. Specif-
ically, consider a distribution PXY over Rd × R and suppose we have a dataset D where each example pair
(xi, yi) ∈ Rd × R is drawn iid from PXY . Let EXY [·] denote the expectation with respect to a draw from PXY

and let ED[·] denote the expectation with respect to the random draw of the dataset (i.e., |D| iid draws from PXY ).
Assumewe have access to a learning algorithm that takes a datasetD as input and outputs a function f̂D that predicts
Y from X. The learning algorithm is implicitly minimizing training error over a hypothesis class F of functions.
Define η(x) = EY |X [Y |X = x]. Then the bias-variance decomposition at any x ∈ Rd is equal to

EY |X,D[(Y − f̂D(x))
2|X = x] = EY |X [(Y − η(x))2|X = x]︸ ︷︷ ︸

irrudicible error

+(η(x)− ED[f̂D(x)])
2︸ ︷︷ ︸

bias-squared

+ED[(ED′ [f̂D′(x)]− f̂D(x))
2]︸ ︷︷ ︸

variance

(i) high bias

Solution:
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[Accepted Answers: (b), (d)]

The bias term describes the difference between the best function one could hope for η(x) and the expected
function that will be learned by the learning algorithm ED[f̂D(x)] using the given training data D. We
often think of the bias term as describing the complexity of the hypothesis class, and in general, how
well the hypothesis class can fit the provided training data. For example, the bias of 1-nearest-neighbor,
a large depth tree, or large neural network is very low because they can perfectly learn just about any
training set, and because the training set is an iid draw from PXY , in expectation, the predictions should
be close to η(x). On the other hand, if the function class is not very complex like linear regression or
a shallow tree, the amount of functions these classes can even learn is very constrained. Therefore the
learning algorithm will output a function that will not be able to fit the training data well, and will not
be able to match η(x) in expectation. Increasing the size of your function class (b) or transforming your
features (d) so that perhaps even a simple function class is better matched to η(x) are the most appropriate
answers. One could make a case that (a) getting a larger training set could reduce bias in edge cases (e.g.,
in linear regression, non-zero bias is inevitable until the number of examples in the dataset is at least the
dimension) but we did not accept this answer as the problem only requested two answers, and (b,d) are
far more appropriate to the spirit of reducing bias.

(ii) high variance

Solution:

[Accepted Answers:(a), (c), (d), (f), (g), (e)]

Variance describes how much the learned function is expected to deviate from dataset to dataset. That is,
given two iid datasets, if the functions learned on each of them are wildly different, then the variance is
very high. For instance, when we considered linear regression with high degree polynomial feature maps,
that is a very high variance class since the functions could accurately fit just about any training set, but the
functions learned deviated a lot from dataset to dataset. One nearest neighbor is also a high variance class
as the particular examples seen directly result in a different function. Linear regression in the natural basis
has d parameters and without regularization the variance scales like d/n if the dataset size is n, explaining
(a). Adding more flexibility to your hypothesis class (b) only increases the opportunity for more variance,
whereas using a simpler hypothesis class (c) only decreases the variance. Using a more appropriate feature
map (d) may allow the algorithm to consider fewer or less noisy features, thereby decreasing variance. In
linear regression when n < d, it is known that gradient methods will converge to a solution with small
`2 norm, which is not a guarantee of other optimization methods; small `2 norm solutions are associated
with smaller variance (e). Adding regularization decreases variance (f,g).

(iii) high irreducible noise

Solution:

[Accepted Answers: nothing ]

The dataset, hypothesis class, and learning algorithm have no role in the irreducible noise term. Therefore
changing these has no effect.

(iv) overfitting

Solution:

[Accepted Answers:(a), (c), (d), (e), (f), (g)]

Overfitting occurs when the the learning algorithm fits the training set very well but poorly generalizes to
new, unseen test data. By reducing variance, perhaps at the expense of increasing bias, one can reduce
overfitting. Thus, the same answers for reducing high variance apply.

(v) underfitting
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Solution:

[Accepted Answers:(b), (d)]

Underfitting occurs when the learning algorithm has a poor fit to the training data. In otherwords, high
bias, so the same answers for reducing bias apply.

(vi) difficulty understanding which features are most important for prediction.

Solution:

[Accepted Answers:(c), (g), (d), (e)]

Adding more hypotheses that have simple interpretations to your hypothesis class could potentially fit
the data better, but typically increasing complexity only hurts interpretability because it potentially adds
more ways to fit the data, which might actually mislead you, so (b) was not one of the most appropriate
answers. A simpler hypothesis class (c) may reduce the number of possible explanations if the data is fit
well, perhaps becoming more interpretable. Crazy non-linear features may allow you to fit the data well,
but simple features with physical meaning may be easier to interpret (d). L1 regularization (g) encourages
sparsity which can be muchmore interpretable than many small coefficients. In high dimensions and when
n < d, many solutions may minimize the training error–the learning algorithm may result in a more or
less interpretable model (e.g., the shooting algorithm versus gradient descent for solving lasso: the former
will often result in a sparser solution).
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