K-means

Sewoong Oh

CSE446 University of Washington

Unsupervised learning and K-means

- in unsupervised learning, the dataset consists of only inputs $\{x_i\}_{i=1}^n$
- and we do not have any labels
- objective: find some pattern
- in particular, most popular unsupervised learning task is clustering: cluster the data into K groups

K-means: an iterative algorithm for clustering

demo: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-means: an iterative algorithm for clustering

step 5

step 6

step 4

K-means: an iterative algorithm for clustering

- in this example K-means converged, i.e. it does not change after this point
- will it always converge? Yes
- does it converge to the right answer (whatever that means)? no
- K-means algorithm
 - input: dataset $\{x_i\}_{i=1}^n$, number of clusters K
 - output: cluster assignment z_i for each data point x_i
 - Initialize each center μ_k to a random location for $k \in \{1, ..., K\}$
 - repeat
 - (assign each point to its nearest cluster-center) $z_i = \arg \min_k ||x_i - \mu_k||_2$ for all $i \in \{1, ..., n\}$
 - (recenter each cluster-center)

• for
$$k \in \{1, \dots, K\}$$

 $X_k \leftarrow \{x_i | z_i = k\}$
 $\mu_k \leftarrow \text{mean}(X_k)$

• while any μ_k changed from previous value

What would we like to do?

- K-means algorithm is trying to minimize the following objective function $\operatorname{minimize}_{\mu_1,\ldots,\mu_K} \sum_{i=1}^{K} \left\{ \min_{\substack{k' \in \{1,\ldots,K\} \\ \mathcal{A}}} \|x_i - \mu_{k'}\|_2^2 \right\}$ this can be written in terms of the assignments z_i 's as minimize $\mu_{1,...,\mu_{K},z_{1},...,z_{n}} \sum_{i=1}^{n} ||x_{i} - \mu_{z_{i}}||_{2}^{2}$ objective fun as K-means is alternatively minimizing • (the assignment step) fix μ_k 's and minimize the objective over z_i 's • (the re-centering step)
 - fix z_i 's and minimize the objective over μ_k 's
- in particular, the objective can only decrease at each step of K-means

Proof of convergence

- there is only a finite set of values that $\{z_i\}_{i=1}^n$ can take K^n choices $(K^n \text{ is large but finite})$
- so there is only finite, K^n at most, values for cluster-centers also

Zi6{1,--,K}

- each time we update them, we will never increase the objective function $\mathscr{L}(z_1, ..., z_n, \mu_i, ..., \mu_K) = \sum_{i=1}^n ||x_i \mu_{z_i}||_2^2$
- the objective is lower bounded by zero
- after at most Kⁿ steps, the algorithm must converge (as the assignments z_i's cannot return to previous assignments in the course of K-means iterations)

downsides of K-means

- it requires the number of clusters K to be specified by us
- the final solution depends on the initialization (does not find global minimum of the objective) Initial position of centers final converged assignment

K-means++: a smart initialization

Smart initialization:

- 1. Choose first cluster center uniformly at random from data points
- 2. Repeat K-1 times
 - 3. For each data point x_i , compute distance d_i to nearest cluster center
- 4. Choose new cluster center from amongst data points, with probability of x_i being chosen proportional to $(d_i)^2$
- apply standard K-means after the initialization

$$U_{2} = \underbrace{\begin{array}{c}X_{1} = \mathcal{M}_{1} \\ X_{2} & \overset{\sim}{\overset{\sim}}{\overset{\circ}}{$$