K-means

Sewoong Oh

CSE446
University of Washington
Unsupervised learning and K-means

- in unsupervised learning, the dataset consists of only inputs \(\{x_i\}_{i=1}^{n} \)
- and we **do not have any labels**
- objective: find some pattern
- in particular, most popular unsupervised learning task is clustering: cluster the data into \(K \) groups
K-means: an iterative algorithm for clustering

demo: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
K-means: an iterative algorithm for clustering

Step 1
Start with K centers at arbitrary positions.

Step 2
Assign each point to its closest center.

Step 3
Recalculate the centers each as the center of its cluster.

Step 4

Step 5

Step 6

K-means: an iterative algorithm for clustering

- in this example K-means converged, i.e. it does not change after this point
- will it always converge? Yes
- does it converge to the right answer (whatever that means)? no

- K-means algorithm
 - input: dataset \(\{x_i\}_{i=1}^n \), number of clusters \(K \)
 - output: cluster assignment \(z_i \) for each data point \(x_i \)
 - Initialize each center \(\mu_k \) to a random location for \(k \in \{1,\ldots,K\} \)
 - repeat
 - (assign each point to its nearest cluster-center)
 \[z_i = \arg\min_k \|x_i - \mu_k\|_2 \text{ for all } i \in \{1,\ldots,n\} \]
 - (recenter each cluster-center)
 - for \(k \in \{1,\ldots,K\} \)
 \[X_k \leftarrow \{x_i | z_i = k\} \]
 \[\mu_k \leftarrow \text{mean}(X_k) \]
 - while any \(\mu_k \) changed from previous value
What would we like to do?

- K-means algorithm is trying to minimize the following objective function
 \[
 \text{minimize} \sum_{i=1}^{n} \left\{ \min_{k' \in \{1, \ldots, K\}} \| x_i - \mu_{k'} \|_2^2 \right\}
 \]
 - this can be written in terms of the assignments z_i's as
 \[
 \text{minimize} \sum_{i=1}^{n} \| x_i - \mu_{z_i} \|_2^2
 \]
 - as K-means is alternatively minimizing
 - (the assignment step)
 fix μ_k's and minimize the objective over z_i's
 - (the re-centering step)
 fix z_i's and minimize the objective over μ_k's
 - in particular, the objective can only decrease at each step of K-means
Proof of convergence

• there is only a finite set of values that \(\{z_i\}_{i=1}^n \) can take (\(K^n \) is large but finite)

• so there is only finite, \(K^n \) at most, values for cluster-centers also

• each time we update them, we will never increase the objective function
 \[
 \mathcal{L}(z_1, \ldots, z_n, \mu_1, \ldots, \mu_K) = \sum_{i=1}^{n} \|x_i - \mu_{z_i}\|_2^2
 \]

• the objective is lower bounded by zero

• after at most \(K^n \) steps, the algorithm must converge (as the assignments \(z_i \)'s cannot return to previous assignments in the course of K-means iterations)
downsides of K-means

- it requires the number of clusters K to be specified by us
- the final solution depends on the initialization
 (does not find global minimum of the objective)

Initial position of centers final converged assignment

Trial 1

Trial 2
K-means++: a smart initialization

Smart initialization:
1. Choose first cluster center uniformly at random from data points
2. Repeat \(K-1 \) times
 3. For each data point \(x_i \), compute distance \(d_i \) to nearest cluster center
 4. Choose new cluster center from amongst data points, with probability of \(x_i \) being chosen proportional to \((d_i)^2 \)

• apply standard K-means after the initialization

\[
\mu_2 = \begin{cases}
 x_1 = \mu_1 \\
 x_2 \sim \mathcal{P} \left(\frac{\| \mu_1 - x_2 \|^2}{\sum_{i=2}^{N} \| \mu_i - x_i \|^2} \right) \\
 \vdots \\
 x_N
\end{cases}
\]