#### Kernel

Sewoong Oh

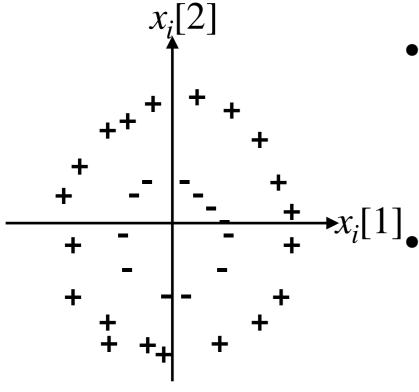
#### CSE446 University of Washington

#### Kernel trick:

#### machine learning for non linearly separable data

#### Why do we need high-dimensional feature maps?

• consider a classification problem with data  $x \in \mathbb{R}^d$  with d = 2



• this is not linearly separable, but a human could engineer a perfect feature map, which  $h(x) = x[1]^2 + x[2]^2 \in \mathbb{R}^k$ , with k = 1

the resulting data can be perfectly separated with a linear classifier

- however, it is a priori hard to know what feature map works for the given data
- so the rule of thumb is to use lots of features with very large k, and hope the linear regression/classification algorithm picks the right feature

# Feature mapping can be expensive

 recall that when we apply linear regression to model non-linear functions, we used feature maps

 $h: \mathbb{R}^d \to \mathbb{R}^k$  $x \mapsto h(x)$ 

- examples include
  - sinusoids
  - polynomials
- recall that in linear least squares regression, for example, we want to solve  $\operatorname{minimize}_{w \in \mathbb{R}^k} \sum_{i=1}^n \left( y_i w^T h(x_i) \right)^2$
- gradient update rule for gradient descent is

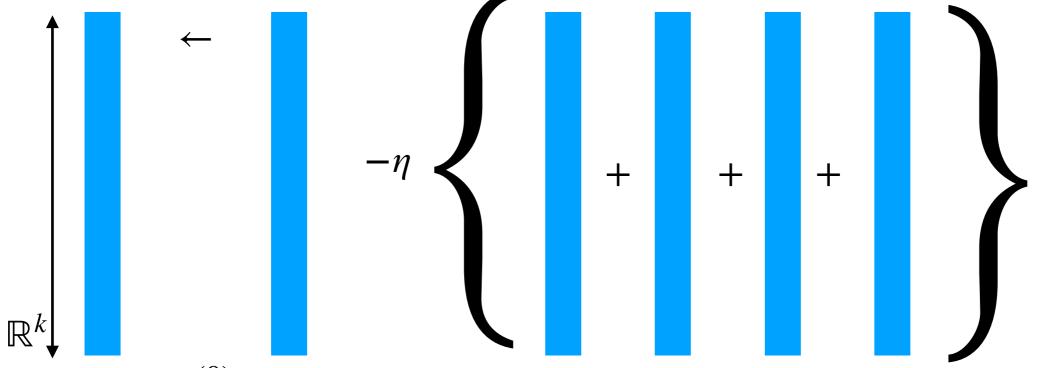
$$w^{(t)} \leftarrow w^{(t-1)} - \eta \sum_{i=1}^{n} \left( (w^{(t-1)})^T h(x_i) - y_i \right) h(x_i)$$

- this can be prohibitively high-dimensional, for example d = 1000 and cubic functions require  $k = 1000^3$
- at a first glance, it seems inevitable to keep k-dimensional memory (for  $w^{(t)}$ 's) and computation to solve such an optimization

## Kernel trick

• however, if the sample size  $n \ll k$ , then we do not need to track all k-dimensions, as the degree of freedom of the problem is much less

$$w^{(t)} \leftarrow w^{(t-1)} - \eta \sum_{i=1}^{n} \left( (w^{(t-1)})^T h(x_i) - y_i \right) h(x_i)$$



- suppose,  $w_n^{(0)} = 0$ , then  $w^{(1)} = \eta \sum_{i=1}^n y_i h(x_i)$  is a linear combination of *n* vectors  $\{h(x_1), \dots, h(x_n)\}$
- so we can compactly write is as  $w^{(1)} = \mathbf{H}^T \alpha^{(1)} \in \mathbb{R}^k$ , where  $\mathbf{H}^T = \begin{bmatrix} h(x_1) & h(x_2) & \cdots & h(x_n) \end{bmatrix} \in \mathbb{R}^{k \times n}$ , and  $\alpha^{(t)} \in \mathbb{R}^n$

#### Kernel trick when $k \gg n$

- as the update rule only adds linear combination of the columns of  $\mathbf{H}^T$ , the entire gradient updates can be replaced from those of  $w^{(t)} \in \mathbb{R}^k$  to those of  $\alpha^{(t)} \in \mathbb{R}^n$
- suppose  $w^{(t-1)}$  is in the span of  $\mathbf{H}^T$ , i.e.  $w^{(t-1)} = \mathbf{H}^T \alpha^{(t-1)}$

$$\begin{split} \text{uppose } w^{(t-1)} \text{ is in the span of } \mathbf{H}^{T}, \text{ i.e. } w^{(t-1)} &= \mathbf{H}^{T} \alpha^{(t-1)} \\ w^{(t)} &= w^{(t-1)} - \eta \sum_{i=1}^{n} \left( (w^{(t-1)})^{T} h(x_{i}) - y_{i} \right) h(x_{i}) \\ &= \mathbf{H}^{T} \alpha^{(t-1)} - \eta \mathbf{H}^{T} \begin{bmatrix} (w^{(t-1)})^{T} h(x_{1}) - y_{1} \\ (w^{(t-1)})^{T} h(x_{2}) - y_{2} \\ \vdots \\ (w^{(t-1)})^{T} h(x_{n}) - y_{n} \end{bmatrix} \\ &= \mathbf{H}^{T} \left\{ \alpha^{(t-1)} - \eta \begin{bmatrix} (w^{(t-1)})^{T} h(x_{1}) - y_{1} \\ (w^{(t-1)})^{T} h(x_{2}) - y_{2} \\ \vdots \\ (w^{(t-1)})^{T} h(x_{n}) - y_{n} \end{bmatrix} \right\} \\ \text{nd hence } w^{(t)} \text{ is also in the span of } \mathbf{H}^{T} \end{split}$$

ar

#### Kernel trick when $k \gg n$

7

• further, the gradient update can be compactly computed

• by representing 
$$w^{(t)} = \mathbf{H}^T \alpha^{(t)}$$
  

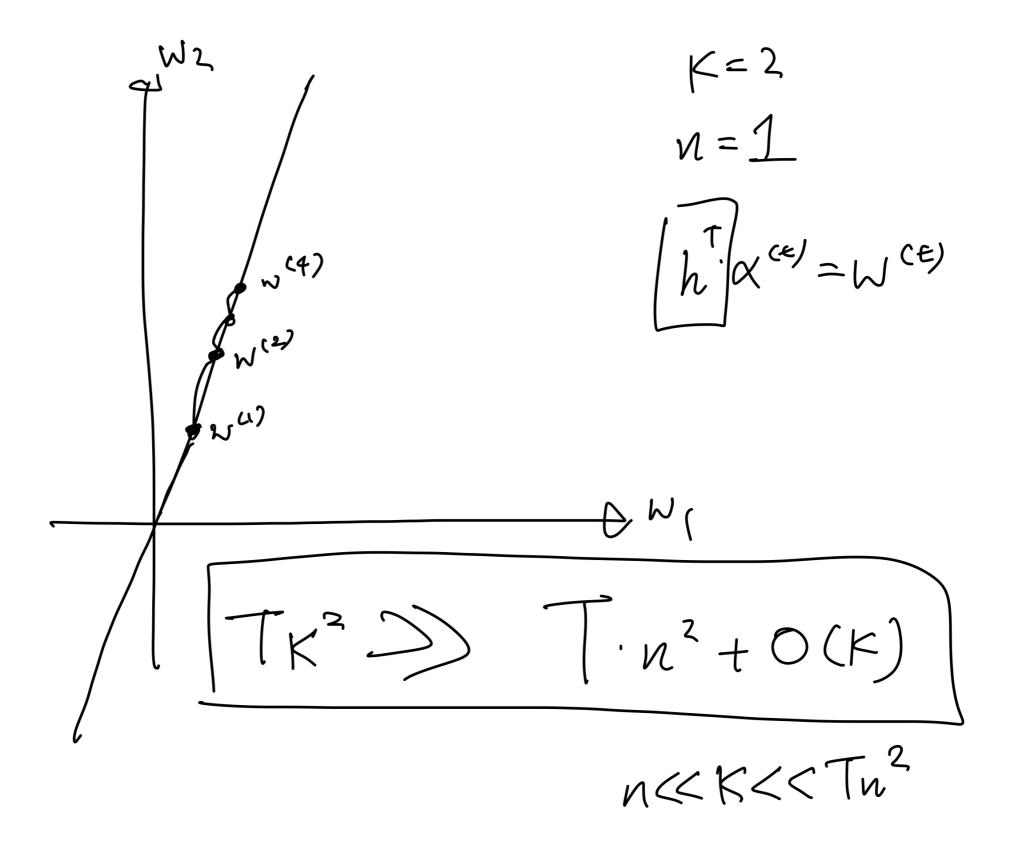
$$\nabla_{\mathbf{w}} \mathcal{L} = \mathcal{H}^T \cdot (\mathcal{H} \mathcal{H}^T \mathcal{K}^{(e-l)} - \mathcal{Y})$$

$$\prod_{i=1}^{n} \mathcal{H}^T \left\{ \alpha^{(t-1)} - \eta \left[ \begin{array}{c} h(x_1)^T (w^{(t-1)}) - y_1 \\ h(x_2)^T (w^{(t-1)}) - y_2 \\ \vdots \\ h(x_n)^T (w^{(t-1)}) - y_n \end{array} \right] \right\}$$

$$= \mathbf{H}^T \left\{ \alpha^{(t-1)} - \eta (\mathbf{H} \mathbf{H}^T \alpha^{(t-1)} - \mathbf{y}) \right\}$$

#### Kernel trick when $k \gg n$

- the kernel trick for gradient update can be written as
  - compute the kernel matrix  $\mathbf{K} \in \mathbb{R}^{n \times n}$  as  $[K_{ij} = K(\mathbf{X}_i, x_j)]$
  - for t = 1, ..., T•  $\alpha^{(t)} \leftarrow \alpha^{(t-1)} - \eta (\mathbf{K} \alpha^{(t-1)} - \mathbf{y})$   $\eta (\mathbf{K} \alpha^{(t-1)} - \mathbf{y})$
- this is 'much more efficient requiring memory of size n and per iteration computational complexity of n<sup>2</sup>
- fundamentally, all we need to know about the feature map  $h(x_i)'s$  is captured in a much more compact matrix **K**



# Closed-form solution to kernel regression $\mathbb{A} : \mathbb{R}^{\mathcal{A}} \longrightarrow \mathbb{D}^{\mathcal{V}}$

N.

- in practice you first choose a kernel to be used
- and compute the kernel matrix  $\mathbf{K} = \mathbf{H}\mathbf{H}^T \in \mathbb{R}^{n \times n}$  for training data
- then the regularized squared loss is  $\mathcal{L}(w) = \|\mathbf{H}w - \mathbf{y}\|_{2}^{2} + \lambda \|w\|_{2}^{2}$ can be written (using  $w = \mathbf{H}^{T} \alpha$ ) as  $\mathcal{L}(\alpha) = \|\mathbf{H}\mathbf{H}^{T}\alpha - \mathbf{y}\|_{2}^{2} + \lambda \alpha^{T}\mathbf{H}\mathbf{H}^{T}\alpha$   $= \|\mathbf{K}\alpha - \mathbf{y}\|_{2}^{2} + \lambda \alpha^{T}\mathbf{K}\alpha$
- as we assume  $k \gg n$  and **K** is invertible (and note that  $\mathbf{K} = \mathbf{K}^T$  by definition), the minimizer is  $\hat{\alpha} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$
- this follows from the fact that  $\nabla_{\alpha} \mathscr{L}(\alpha) = 2\mathbf{K}^{T}(\mathbf{K}\alpha - \mathbf{y}) + 2\lambda \mathbf{K}\alpha$
- also it follows that

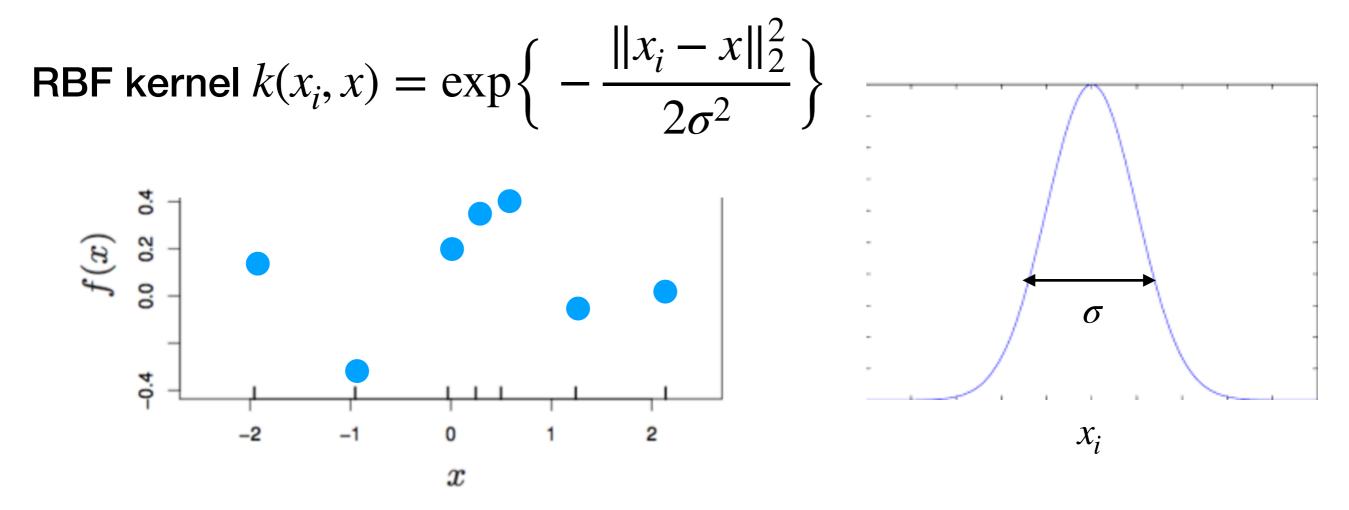
$$\hat{v} = \mathbf{H}^T \hat{\alpha} = \mathbf{H}^T (\mathbf{H}\mathbf{H}^T + \lambda \mathbf{I})^{-1} \mathbf{y}$$

and the prediction is

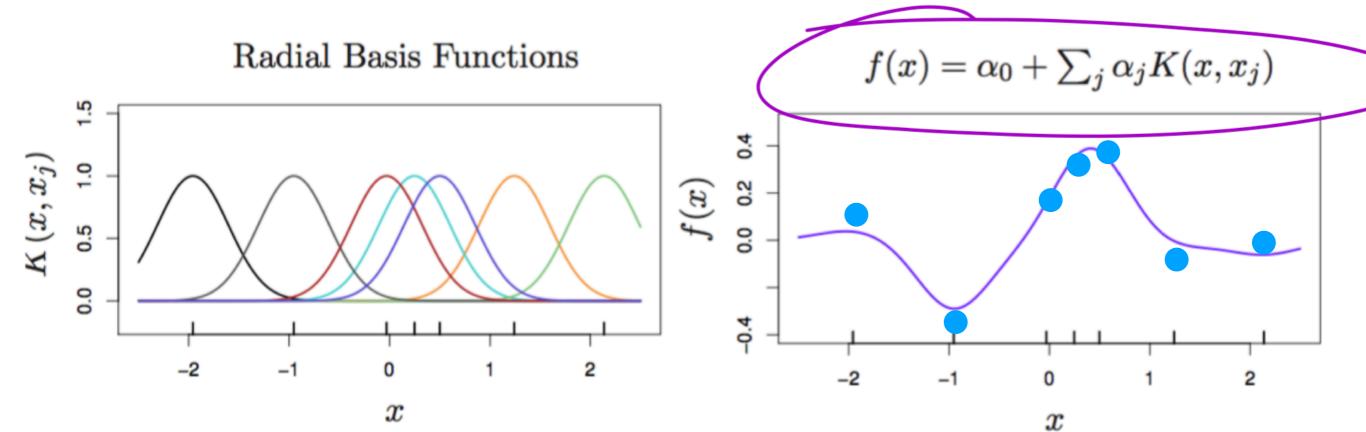
$$f(x) = h(x)^T \hat{w} = h(x)^T \mathbf{H}^T \hat{\alpha} = \sum_{i=1}^n K(x_i, x) \hat{\alpha}_i$$

• this is a weighted sum of kernel functions  $K(x_i, \cdot)$  "centered" at  $x_i$ 's, weighted by the learned parameter  $\hat{\alpha}$  's

the learned parameter  $\hat{\alpha}_i$ 's

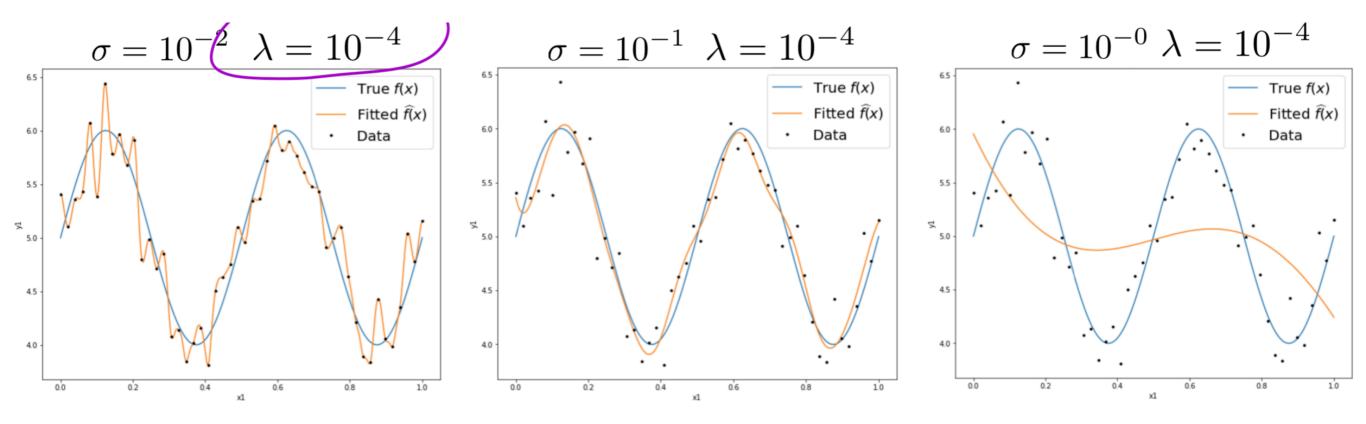


• predictor is taking weighted sum of *n* kernel functions centered at each sample points



**RBF kernel**  $k(x_i, x) = \exp\left\{-\frac{\|x_i - x\|_2^2}{2\sigma^2}\right\}$ 

- $\mathscr{L}(w) = \|\mathbf{H}w \mathbf{y}\|_2^2 + \lambda \|w\|_2^2$
- The bandwidth  $\sigma^2$  of the kernel regularizes the predictor



#### From kernels to feature maps

- recall that selecting the right feature map  $h(\cdot)$  is important for the model to be accurate,
- now that (potentially challenging) task of feature engineering can be replaced by selecting the kernel

$$K(x_i, x_j) = h(x_i)^T h(x_j)$$

- in particular, we do not even need to write down the feature map  $h(\cdot)$ , we only need to ensure existence, i.e. make sure that the kernel  $K(\cdot, \cdot)$  we use is derived from **some** feature map
- but first, let's look at some concrete examples
  - linear kernel  $K(x_i, x_j) = x_i^T x_j$ corresponds to  $h(x_i) = x_i$

• affine kernel 
$$K(x_i, x_j) = x_i^T x_j + 1$$
  
corresponds to  $h(x_i) = \begin{bmatrix} 1 \\ x_i \end{bmatrix}$ 

#### From kernels to feature maps

• kernel 
$$K(x_i, x_j) = (x_i^T x_j)^2$$
  

$$= \left(\sum_{i'=1}^d x_i[i']x_j[i']\right)^2$$

$$= \sum_{i',i''=1}^d \left(x_i[i']x_i[i']x_j[i']\right)$$
feature map is  $h(x_i) = \begin{bmatrix} x_i[1]x_i[1] \\ x_i[1]x_i[2] \\ \vdots \\ x_i[d]x_i[d] \end{bmatrix}$ , which is the second order polynomial features  
• similarly, kernel  $K(x_i, x_j) = (x_i^T x_j + 1)^2$   

$$= \sum_{i',i''} (x_i[i]x_i[i''])(x_j[i']x_j[i'']) + \sum_{i'=1}^d \sqrt{2}x_i[i']x_j[i'] + 1$$
feature map is all monomials up to degree two

#### From kernels to feature maps

- in general  $K(x_i, x_j) = (x_i^T x_j + 1)^p$  corresponds to polynomial feature map of degree p
- Gaussian kernel is

$$K(x_i, x_j) = \exp\left\{\frac{-\|x_i - x_j\|_2^2}{2\sigma^2}\right\}$$

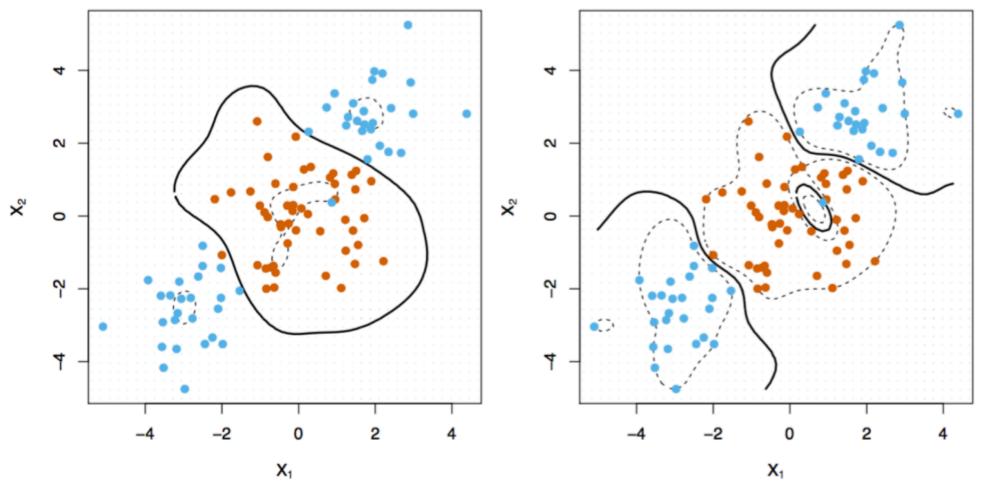
which is a common measure of similarity between two points

finding the corresponding feature map is a homework problem

#### classification with kernel

• 
$$\hat{w} = \arg \min_{w} \sum_{i=1}^{n} \max\{0, 1 - y_i(b + w^T h(x_i))\} + \lambda ||w||_2^2$$
  
using kernels, it can be simplified as  
 $\hat{\alpha} = \arg \min_{\alpha} \sum_{i=1}^{n} \max\{0, 1 - y_i(b + \alpha^T \mathbf{K}[:, i])\} + \lambda \alpha^T \mathbf{K} \alpha$ 

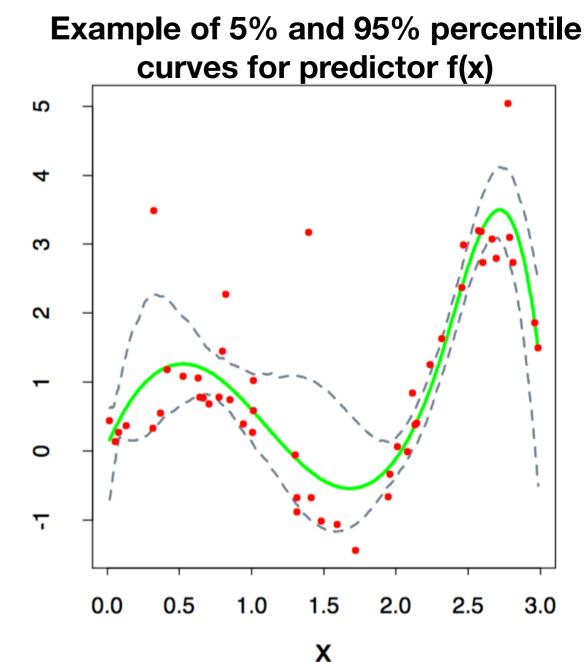




#### **Bootstrap** finding confidence interval

## confidence interval

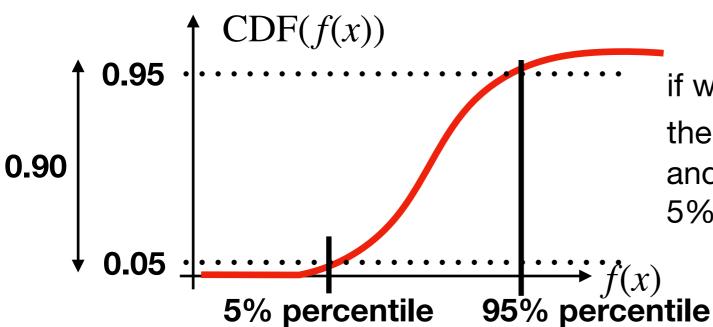
- suppose you have training data  $\{(x_i, y_i)\}_{i=1}^n$  drawn i.i.d. from some true distribution  $P_{x,y}$
- we train a kernel ridge regressor, with some choice of a kernel  $K : \mathbb{R}^{d \times d} \to \mathbb{R}$ minmize<sub> $\alpha$ </sub>  $\|\mathbf{K}\alpha - \mathbf{y}\|_{2}^{2} + \lambda \alpha^{T} \mathbf{K}\alpha$  Example of 5% and
- the resulting predictor is  $f(x) = \sum_{i=1}^{n} K(x_i, x) \hat{\alpha}_i,$ where  $\hat{\alpha} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} \in \mathbb{R}^n$
- we wish to build a confidence interval for our predictor *f*(*x*), using 5% and 95% percentiles



# confidence interval

- let's focus on a single  $x \in \mathbb{R}^d$
- note that our predictor f(x) is a random variable, whose randomness comes from the training data  $S_{\text{train}} = \{(x_i, y_i)\}_{i=1}^n$
- if we know the statistics

   (in particular the CDF of the random variable *f*(*x*)) of the predictor, then the confidence interval with confidence level 90% is defined as



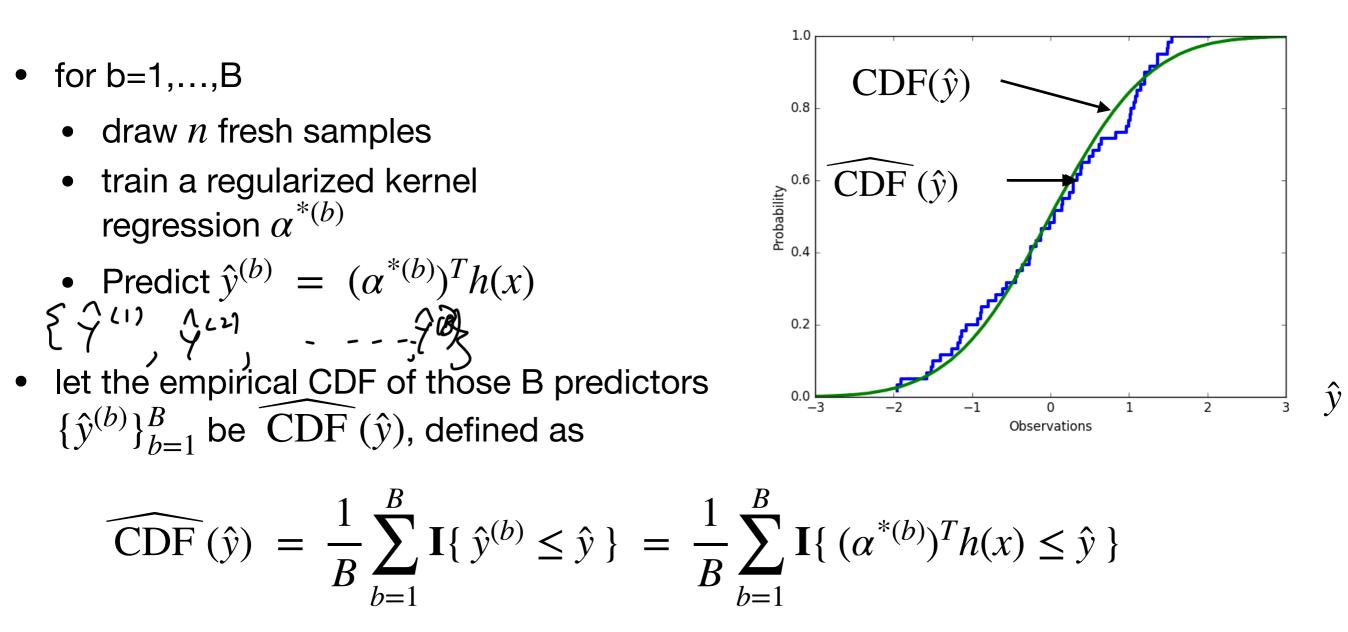
 $x = \begin{bmatrix} x & y \\ x \end{bmatrix}$ 

if we know the distribution of our predictor f(x)the green line is the expectation  $\mathbb{E}[f(x)]$ and the black dashed lines are the 5% and 95% percentiles in the figure above

as we do not have the cumulative distribution function (CDF),
 we need to approximate them

## confidence interval

- J=f(x)ER. Random S(6)
- hypothetically, if we can sample as many times as we want, then we can train  $B \in \mathbb{Z}^+$  i.i.d. predictors, each trained on *n* fresh samples to get **empirical estimate of the CDF of**  $\hat{y} = f(x)$



• compute the confidence interval using  $\widehat{\mathrm{CDF}}(\hat{y})$ 

#### Bootstrap

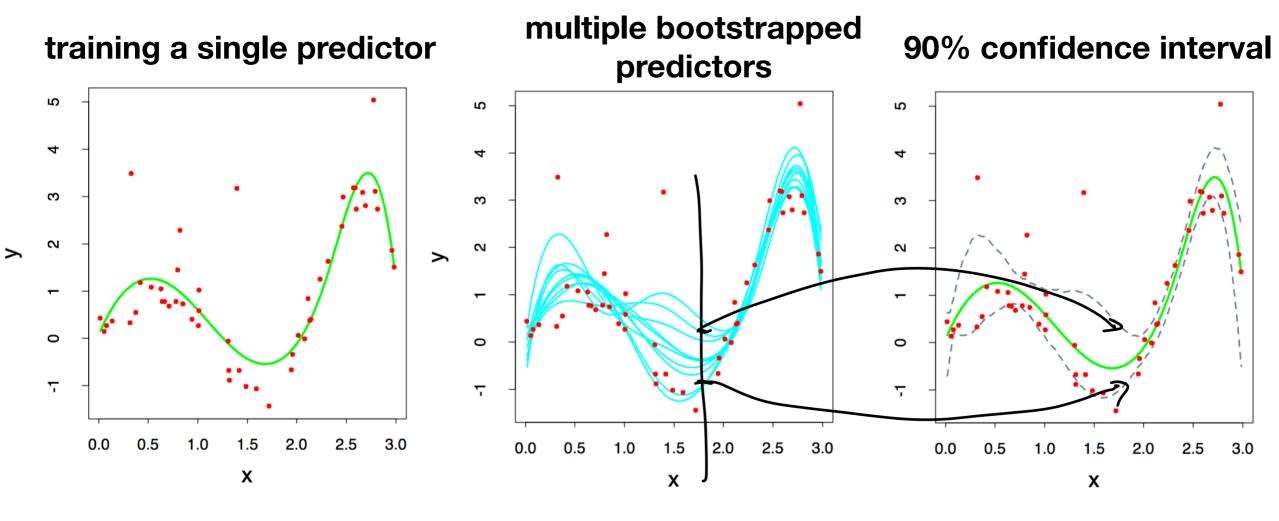
- as we cannot sample repeatedly (in typical cases), we use **bootstrap samples** instead
- bootstrap is a general tool for assessing statistical accuracy
- we learn it in the context of confidence interval for trained models
- a **bootstrap dataset** is created from the training dataset by taking n (the same size as the training data) examples uniformly at random with replacement from the training data  $\{(x_i, y_i)\}_{i=1}^n$

 $n=7, \{1,2,5,7,8,8,9\}$ 

- for b=1,...,B

  - train a regularized kernel regression  $\alpha^{*(b)} \xrightarrow{S_{bovesenp}} \{8, 1, 1, 9, 8, 8, 2\}$
  - predict  $(\alpha^{*(b)})^T h(x)$
- compute the empirical CDF from the bootstrap datasets, and compute the confidence interval

#### bootstrap



Figures from Hastie et al