Kernel

Sewoong Oh

CSE446
University of Washington

Kernel trick:

machine learning for non linearly separable data

Why do we need high-dimensional feature maps?

» consider a classification problem with data x € R? with d = 2

x£[2]

——F oy [1]

* thisis not linearly separable, but a human could
engineer a perfect feature map, which

h(x) = x[1]7 + x[2]* € Rk,
withk =1

* the resulting data can be perfectly separated
with a linear classifier

== —H—s f(x) = x[1]° +x[2]°
h(x) =c

e however, it is a priori hard to know what feature map works for the
given data

e so the rule of thumb is to use lots of features with very large k, and
hope the linear regression/classification algorithm picks the right
feature

Feature mapping can be expensive

recall that when we apply linear regression to model
non-linear functions, we used feature maps

h:RY— R-
x — h(x)
examples include
e sinusoids
e polynomials
recall that in linear least nsquares regression, for example, we want to solve

minimize, g« Z (yl- — whh(x))

i=1
gradient update rule for grandient descent is

w® = WD = 3 (W h() = y;)b
i=1
this can be prohibitively high-dimensional,
for example d = 1000 and cubic functions require k = 10007

at a first glance, it seems inevitable to keep

k-dimensional memory (for w(t)'s) and computation to solve such an
optimization

Kernel trick

e however, if the sample size n < k, then we do not need to track
all k-dimensions, as the dengree of freedom of the problem is much less

w® — wl=b _yp Z ((W(t_l))Th(xi) —)i)h(xi)

=1
@
— + + B +

e sSuppose, W;O) = 0, then

>

Rk

\ 4

w) = 7 Z y;h(x;) s alinear combination of n vectors {h(x,), -+, h(x,)}
=1

e SO we can compactly write is as wl) = HlgW e IRI‘, where
H' = [h(x) h(x) - h(x,)| € R*" and a® € R"

Kernel trick when k > n

e as the update rule only adds linear combination of the columns of HT, the entire
gradient updates can be replaced from those of w® € RX to those of a”) € R”

o suppose W Dis in the span of H' , i.e. w1 = HT @(=1 HTE-_“MK) o lﬂCXmﬁ
w® = wiD = Y (WwD)Thx) - y;)) —
=1
DY h(x) -y, >f‘
= Hla"V - yH! W=D h(x) =,
WD) h(x,) -y, ¥
W) -y "

= H'{ oD —p (W(t_l))Th(x2)_y2

YT h(x,) =y, ct)

kk/
e and hence w® is also in the span of H? ~— LJ Jl » X

6

Kernel trick when k > n

e further, the gradient update can be compactly computed

. T (€A
e by representing w® = H ¥ ~ T, X, >
g L= b ' (hh X

T -1
H o® = H! a(t—l)_” h(xz) (Wft))—Y2

i

he) (D) =y,

he,) (WD) =y,

|

-~

h hlgt=D y

_ HT{ a1 _ n(HHTa(t—l) _ y)}

Kernel trick when k > n

e the kernel with respect to a feature map & : R? — RXis defined as

K:R'xR—> R v=Ky 6o - -k,
(-xia x]) = K(xia x]) — h(xl)Th(x]) [‘

\
]

K
* the kernel trick for gradient update can be written as
 compute the kernel matrix K € R as?(ij = K(, xj)J

e fort=1,...,T , &)
oD gD _ K (Hj— < [T
y nRa y) q
WV\ m P 1 \

g

e this is much more efficient requiring memory of size n and per iteration
computational complexity of n’

« fundamentally, all we need to know about the feature map /(x;)’s is
captured in a much more compact matrix K

n< KL< TVI/Z

we e K= hoh' €@ — K=K
L= byl + A k]
= | K'oé—jl\,_l + Aol Kok
VL= p T (kamy) 422Kk =0
=2 K(K

11

Closed-form solution to kernel regressmn

o Rt —p"
* in practice you first choose a kernel to be used

e and compute the kernel matrix K = HH? € R™" for training data H 7
* then the regularized squared loss is v [
Zw) = [Hw—yl2 + Alwl3 T
can be written (using|lw = H a) las ‘)
(@) = |[HH'a -y||5+ la’HH a
= [|Ka — yllg + la'Ka

e as we assume k > n and K is invertible (and note that K = K by definition),
the minimizeri§a = (K+ D7y

e this follows fro € fact that =

V, ZL(a) = 2K ' (Ka —y) + 21K«
e also it follows that

= H'¢ = H'(HH! + A)™!

* and the prediction is

f@) = @™ = kW™ e =) K04,

i=1
e this is a weighted sum of kernel functions K(x;, -) “centered” at x;’s, weighted by
the learned parameter @;’s

1x; — xll5
RBF kernel k(x;, x) = exp

20?2
; n “
~~
) g . O O
p—
“~ o ‘ « >
o O 0
- ® \
? - Il ll l1 L1 I |]l B —
-2 -1 0 1 2 X;
xIr

e predictor is taking weighted sum of n kernel functions centered at each sample points

Radial Basis Functions

K(z,z;)

0
-
o
o
o ~N
8] o©
~—’ .
0 Y~ o |
° ° O
o | .
@ “
| | L1 1 | | .
r I T T 1 Q@ - 1 l L1 _ .
-2 -1 0 1 2 2 1 . 5
I

_ 12
RBF kernel k(x, x) = exp{ Lol XHQ}

20%
« Z(w) = |[Hw—yll5 + Allwll3

e The bandwidth o7 of the kernel regularizes the predictor

a—mQA—mJ c=10"A=10"" 0=10""A=10""

True fix) True f(x) True fix)

Fitted f(x) . . Fitted f(x)) . Fitted f(x)
+ Data 1 X . . + Data ., ; .+ Data

13

From kernels to feature maps

e recall that selecting the right feature map /(-)
Is important for the model to be accurate,

e now that (potentially challenging) task of feature engineering can
be replaced by selecting the kernel

K(xl-, x]) = h(xl-)Th(xj)

* |n particular, we do not even need to write down the feature map
h(-), we only need to ensure existence, i.e. make sure that the
kernel K(-, -) we use is derived from some feature map

* Dbut first, let’s look at some concrete examples

- _ T
o linear kernel K(x;, xj) = X; X;

corresponds to A(x;) = x;

o affine kernel K(x;, xj) =)giTgcj + 1

1

A

corresponds to /(x;) =

15

From kernels to feature maps

« kernel K(x;, xj) =

feature map is A(x;) =

polynomial features

d

(X

i'=1

11"=1

T ..\2
(xi x])

2
xli'Tx i’)

xi_
x| 1

-

X:

X:

I [1.
>

i [dd) Bl

ldld]

3 (s, [z"}c 5107

. which is the second order

o similarly, kernel K(x;, x) = (x X; + 1)?

Z Ol Dl L) + Z V2x[ix[i] + 1

feature map is all monomials up to degree two

16

From kernels to feature maps

e in general K(x;, xj) = (xl.Tx]-+ 1) corresponds to
polynomial feature map of degree p

e (Gaussian kernel is ,
—[lx; = x;113

20?

which is a common measure of similarity between two
points

e finding the corresponding feature map is a homework
problem

K(x;,x;) = exp

classification with kernel

W = arg min Z max{0,1 — y(b + wlh(x))} + Allw||3

. Li=1 . e
using kernels, it can be simplified as

Q = argmin Z max{0,1 —y(b + a’K[: ,i])} + la’Ka
Y=l

overfitting when o is small with RBF kernel

17 X, X,

18

Bootstrap
finding confidence interval

19

confidence interval

suppose you have training data {(x;, y;) },_; drawn i.i.d. from some true
distribution P, ,

we train a kernel ridge regressor, with some choice of a kernel
K:R™ 5 R

minmize, ||Ka — y”% + la’Ka Example of 5% and 95% percentile
curves for predictor f(x)

the resulting p;ledictor IS o -
f) =) Kx,0a, .
i=1) . //0.\. \\
where @ Ve ot\!
a = K+Dly eR” N BN fo
> ,/ \\ ‘// 1‘.
- | l/ o..\!‘\,’\\ 7//, \\
we wish to build a confidence interval TN N ! \
for our predictor f(x), using ° 11 SO Al |
5% and 95% percentiles _ | e~ |

confidence interval

e let's focus on a single x € R4

e note that our predictor f(x) is a random . - -

variable, whose randomness comes

from the training data S,,,;, = 1(x;, ¥,) }iq o e\

e if we know the statistics
(in particular the CDF of the

random variable f(x)) of the predictor,

then the confidence interval with
confidence level 90% is defined as

5% percentile

............. 200

95% percentile

if we know the distribution of our predictor f(x)

the green line is the expectation E[f(x)]
and the black dashed lines are the
5% and 95% percentiles in the figure above

e as we do not have the cumulative distribution function (CDF),

20

we need to approximate them

confidence interval

* hypothetically, if we can sample as many times as we want,
then we can train B € Z7 i.i.d. predictors, each trained on n fresh samples to

get empirical estimate of the CDF of y = f(x)

1.0

e for b=1,...,B
e draw n fresh samples

e train a regularized kernel >
. * =
regression o Q 5

e Predict 5V = (a) h(x)

"CDF (5)

E?(l)} C\/UJ’) o _;?% 02!

* let the empirical CDF of those B predictors 0ol

A

{9(19)}5:1 be CDF (), defined as

_— 1 o >
CDF (§) = — Y I3 <3} = —)1

B

» . compute the confidence interval using CDF (y)

<>

22

Bootstrap

as we cannot sample repeatedly (in typical cases), we use
bootstrap samples instead

bootstrap is a general tool for assessing statistical accuracy
we learn it in the context of confidence interval for trained models

a bootstrap dataset is created from the training dataset by
taking n (the same size as the training data) examples uniformly at
random1W|th replacement 1trom the training data { (x;, yl)}

for b=1,...,B A::;L/ f k/Z/ S\/7-)?/%2/(73

. create a bootstrap dataset S\”

bootstrap “b) 560 ee,;'a? ~ { SI/ 1 y 1} ﬁ/ 8/ 8/23

e train a regularized kernel regression o
o predict (a”) h(x)

compute the empirical CDF from the bootstrap datasets, and
compute the confidence interval

bootstrap

multiple bootstrapped

training a single predictor 90% confidence interval

predictors

mn — L To) _ ° To) _

<+ A <+

0’) -1 ¢ m -
> (4] - > o -

I=} . 'Y
o -1 o .
60 05 10 15 20 25 30 00 05 10 15 |20 25 3.0 00 05 10 15 20 25 3.0
X X X

Figures from Hastie et al

23

