
Kernel

Sewoong Oh

CSE446

University of Washington

Kernel trick:
machine learning for non linearly separable data

2

Why do we need high-dimensional feature maps?
• consider a classification problem with data with x ∈ ℝd d = 2

3

+

-

-

-
-

-

-

-

+
+

+
+
+

+
+++++

+
+

+

+
+

++

+

• this is not linearly separable, but a human could
engineer a perfect feature map, which  
 , 
with

• the resulting data can be perfectly separated
with a linear classifier

h(x) = x[1]2 + x[2]2 ∈ ℝk

k = 1

• however, it is a priori hard to know what feature map works for the
given data

• so the rule of thumb is to use lots of features with very large , and
hope the linear regression/classification algorithm picks the right
feature

k

xi[1]

xi[2]

h(x) = x[1]2 + x[2]2+++++----

h(x) = c

Feature mapping can be expensive
• recall that when we apply linear regression to model  

non-linear functions, we used feature maps  
  

• examples include

• sinusoids

• polynomials

• recall that in linear least squares regression, for example, we want to solve 

• gradient update rule for gradient descent is 

• this can be prohibitively high-dimensional,  
for example and cubic functions require

• at a first glance, it seems inevitable to keep  
-dimensional memory (for 's) and computation to solve such an

optimization

h : ℝd → ℝk

x ↦ h(x)

minimizew∈ℝk

n

∑
i=1

(yi − wTh(xi))
2

w(t) ← w(t−1) − η
n

∑
i=1

((w(t−1))Th(xi) − yi)h(xi)

d = 1000 k = 10003

k w(t)

4

Kernel trick
• however, if the sample size , then we do not need to track  

all -dimensions, as the degree of freedom of the problem is much less 

• suppose, , then  

 is a linear combination of vectors

• so we can compactly write is as , where  
, and

n ≪ k
k

w(t) ← w(t−1) − η
n

∑
i=1

((w(t−1))Th(xi) − yi)h(xi)

w(0) = 0
w(1) = η

n

∑
i=1

yih(xi) n {h(x1), ⋯, h(xn)}

w(1) = HTα(1) ∈ ℝk

HT = [h(x1) h(x2) ⋯ h(xn)] ∈ ℝk×n α(t) ∈ ℝn5

←

−η{ }+ + +

ℝk

Kernel trick when k ≫ n
• as the update rule only adds linear combination of the columns of , the entire

gradient updates can be replaced from those of to those of

• suppose is in the span of , i.e.  
 

  

  

  

 
 

• and hence is also in the span of

HT

w(t) ∈ ℝk α(t) ∈ ℝn

w(t−1) HT w(t−1) = HTα(t−1)

w(t) = w(t−1) − η
n

∑
i=1

((w(t−1))Th(xi) − yi)h(xi)

= HTα(t−1) − ηHT

(w(t−1))Th(x1) − y1

(w(t−1))Th(x2) − y2
⋮

(w(t−1))Th(xn) − yn

= HT α(t−1) − η

(w(t−1))Th(x1) − y1

(w(t−1))Th(x2) − y2
⋮

(w(t−1))Th(xn) − yn
w(t) HT

6

HT

Kernel trick when k ≫ n
• further, the gradient update can be compactly computed

• by representing  
 
 
 
 
 
 

 

  
 
 

w(t) = HTα(t)

HTα(t) = HT α(t−1) − η

h(x1)T(w(t−1)) − y1

h(x2)T(w(t−1)) − y2
⋮

h(xn)T(w(t−1)) − yn

= HT{α(t−1) − η(HHTα(t−1) − y)}
7

⏟
y

⏟
hTα(t−1)

⏟
h

Kernel trick when k ≫ n
• the kernel with respect to a feature map is defined as 

 

• the kernel trick for gradient update can be written as

• compute the kernel matrix as

• for

•

• this is much more efficient requiring memory of size and per iteration
computational complexity of

• fundamentally, all we need to know about the feature map is
captured in a much more compact matrix

h : ℝd → ℝk

K : ℝd × ℝd → ℝ
(xi, xj) ↦ K(xi, xj) = h(xi)Th(xj)

K ∈ ℝn×n Kij = K(xi, xj)
t = 1,…, T
α(t) ← α(t−1) − η(Kα(t−1) − y)

n
n2

h(xi)′ s
K

8

9

Closed-form solution to kernel regression
• in practice you first choose a kernel to be used

• and compute the kernel matrix for training data

• then the regularized squared loss is  

  
can be written (using) as  
  
  

• as we assume and is invertible (and note that by definition),  
the minimizer is

• this follows from the fact that  

• also it follows that  

• and the prediction is  

• this is a weighted sum of kernel functions “centered” at ’s, weighted by
the learned parameter ’s

K = HHT ∈ ℝn×n

ℒ(w) = ∥Hw − y∥2
2 + λ∥w∥2

2
w = HTα

ℒ(α) = ∥HHTα − y∥2
2 + λαTHHTα

= ∥Kα − y∥2
2 + λαTKα

k ≫ n K K = KT

α̂ = (K + λI)−1y

∇αℒ(α) = 2KT(Kα − y) + 2λKα

ŵ = HTα̂ = HT(HHT + λI)−1y

f(x) = h(x)Tŵ = h(x)THTα̂ =
n

∑
i=1

K(xi, x)α̂i

K(xi, ⋅) xi
α̂i11

RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

• predictor is taking weighted sum of kernel functions centered at each sample pointsn

12

xi

σ

RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }
•

• The bandwidth of the kernel regularizes the predictor
ℒ(w) = ∥Hw − y∥2

2 + λ∥w∥2
2

σ2

13

From kernels to feature maps
• recall that selecting the right feature map  

is important for the model to be accurate,

• now that (potentially challenging) task of feature engineering can

be replaced by selecting the kernel  

• in particular, we do not even need to write down the feature map
, we only need to ensure existence, i.e. make sure that the

kernel we use is derived from some feature map

• but first, let’s look at some concrete examples

• linear kernel  
corresponds to

• affine kernel  

corresponds to

h(⋅)

K(xi, xj) = h(xi)Th(xj)

h(⋅)
K(⋅ , ⋅)

K(xi, xj) = xT
i xj

h(xi) = xi

K(xi, xj) = xT
i xj + 1

h(xi) = [1
xi]

14

From kernels to feature maps
• kernel  

  

 

  

 

feature map is , which is the second order

polynomial features

• similarly, kernel  

 

feature map is all monomials up to degree two

K(xi, xj) = (xT
i xj)2

= (
d

∑
i′ =1

xi[i′]xj[i′])
2

=
d

∑
i′ ,i′ ′ =1

xi[i′]xi[i′ ′]xj[i′]xj[i′ ′]

h(xi) =

xi[1]xi[1]
xi[1]xi[2]

⋮
xi[d]xi[d]

K(xi, xj) = (xT
i xj + 1)2

= ∑
i′ ,i′ ′

(xi[i]xi[i′ ′])(xj[i′]xj[i′ ′]) +
d

∑
i′ =1

2xi[i′]xj[i′] + 1

15

From kernels to feature maps

• in general corresponds to
polynomial feature map of degree

• Gaussian kernel is  

  

which is a common measure of similarity between two
points

• finding the corresponding feature map is a homework
problem

K(xi, xj) = (xT
i xj + 1)p

p

K(xi, xj) = exp {
−∥xi − xj∥2

2

2σ2 }

16

classification with kernel

•   

using kernels, it can be simplified as  

ŵ = arg min
w

n

∑
i=1

max{0,1 − yi(b + wTh(xi))} + λ∥w∥2
2

α̂ = arg min
α

n

∑
i=1

max{0,1 − yi(b + αTK[: , i])} + λαTKα

17

overfitting when is small with RBF kernelσ

18

Bootstrap
finding confidence interval

confidence interval
• suppose you have training data drawn i.i.d. from some true

distribution

• we train a kernel ridge regressor, with some choice of a kernel
 

• the resulting predictor is  

 ,  

where  

• we wish to build a confidence interval  
for our predictor , using  
5% and 95% percentiles

{(xi, yi)}n
i=1

Px,y

K : ℝd×d → ℝ
minmizeα ∥Kα − y∥2

2 + λαTKα

f(x) =
n

∑
i=1

K(xi, x)α̂i

α̂ = (K + λI)−1y ∈ ℝn

f(x)

19

Example of 5% and 95% percentile 
curves for predictor f(x)

confidence interval
• let's focus on a single

• note that our predictor is a random  
variable, whose randomness comes  
from the training data

• if we know the statistics  
(in particular the CDF of the  
random variable) of the predictor,  
then the confidence interval with  
confidence level 90% is defined as

• as we do not have the cumulative distribution function (CDF), 
we need to approximate them

x ∈ ℝd

f(x)

Strain = {(xi, yi)}n
i=1

f(x)

20

f(x)

CDF(f(x))
0.95

0.05
5% percentile 95% percentile

if we know the distribution of our predictor ,

the green line is the expectation  
and the black dashed lines are the  
5% and 95% percentiles in the figure above 

f(x)
𝔼[f(x)]

0.90

confidence interval
• hypothetically, if we can sample as many times as we want,  

then we can train i.i.d. predictors, each trained on fresh samples to
get empirical estimate of the CDF of

• for b=1,…,B

• draw fresh samples

• train a regularized kernel  

regression

• Predict

• let the empirical CDF of those B predictors 
 be , defined as  

 

• compute the confidence interval using

B ∈ ℤ+ n
̂y = f(x)

n

α*(b)

̂y(b) = (α*(b))Th(x)

{ ̂y(b)}B
b=1

̂CDF (̂y)

̂CDF (̂y) =
1
B

B

∑
b=1

I{ ̂y(b) ≤ ̂y } =
1
B

B

∑
b=1

I{ (α*(b))Th(x) ≤ ̂y }

̂CDF (̂y)21

̂y

CDF(̂y)

̂CDF (̂y)

Bootstrap
• as we cannot sample repeatedly (in typical cases), we use

bootstrap samples instead

• bootstrap is a general tool for assessing statistical accuracy

• we learn it in the context of confidence interval for trained models

• a bootstrap dataset is created from the training dataset by  
taking (the same size as the training data) examples uniformly at
random with replacement from the training data  

• for b=1,…,B

• create a bootstrap dataset

• train a regularized kernel regression

• predict

• compute the empirical CDF from the bootstrap datasets, and
compute the confidence interval

n
{(xi, yi)}n

i=1

S(b)
bootstrap

α*(b)

(α*(b))Th(x)

22

bootstrap

23

Figures from Hastie et al

training a single predictor multiple bootstrapped 
predictors 90% confidence interval

