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Kernel trick: 
machine learning for non linearly separable data
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Why do we need high-dimensional feature maps?
• consider a classification problem with data  with x ∈ ℝd d = 2
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• this is not linearly separable, but a human could 
engineer a perfect feature map, which  
          , 
with 


• the resulting data can be perfectly separated 
with a linear classifier

h(x) = x[1]2 + x[2]2 ∈ ℝk

k = 1

• however, it is a priori hard to know what feature map works for the 
given data


• so the rule of thumb is to use lots of features with very large , and 
hope the linear regression/classification algorithm picks the right 
feature

k

xi[1]

xi[2]

h(x) = x[1]2 + x[2]2+++++----

h(x) = c



Feature mapping can be expensive
• recall that when we apply linear regression to model  

non-linear functions, we used feature maps  
            
                 


• examples include 

• sinusoids

• polynomials


• recall that in linear least squares regression, for example, we want to solve 

         


• gradient update rule for gradient descent is 

         


• this can be prohibitively high-dimensional,  
for example  and cubic functions require 


• at a first glance, it seems inevitable to keep  
-dimensional memory (for 's) and computation to solve such an 

optimization

h : ℝd → ℝk

x ↦ h(x)

minimizew∈ℝk

n

∑
i=1

(yi − wTh(xi) )
2

w(t) ← w(t−1) − η
n

∑
i=1

( (w(t−1))Th(xi) − yi )h(xi)

d = 1000 k = 10003

k w(t)
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Kernel trick
• however, if the sample size , then  we do not need to track  

all -dimensions, as the degree of freedom of the problem is much less 

        


• suppose, , then  

      is a linear combination of  vectors 


• so we can compactly write is as  , where  
, and 

n ≪ k
k

w(t) ← w(t−1) − η
n

∑
i=1

( (w(t−1))Th(xi) − yi )h(xi)

w(0) = 0
w(1) = η

n

∑
i=1

yih(xi) n {h(x1), ⋯, h(xn)}

w(1) = HTα(1) ∈ ℝk

HT = [h(x1) h(x2) ⋯ h(xn)] ∈ ℝk×n α(t) ∈ ℝn5

←

−η{ }+ + +

ℝk



Kernel trick when k ≫ n
• as the update rule only adds linear combination of the columns of , the entire 

gradient updates can be replaced from those of  to those of 


• suppose  is in the span of  , i.e.  
 

          

                   

                  

 
 

                  


• and hence  is also in the span of 

HT

w(t) ∈ ℝk α(t) ∈ ℝn

w(t−1) HT w(t−1) = HTα(t−1)

w(t) = w(t−1) − η
n

∑
i=1

( (w(t−1))Th(xi) − yi )h(xi)

= HTα(t−1) − ηHT

(w(t−1))Th(x1) − y1

(w(t−1))Th(x2) − y2
⋮

(w(t−1))Th(xn) − yn

= HT α(t−1) − η

(w(t−1))Th(x1) − y1

(w(t−1))Th(x2) − y2
⋮

(w(t−1))Th(xn) − yn
w(t) HT
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Kernel trick when k ≫ n
• further, the gradient update can be compactly computed 


• by representing   
 
 
 
 
 
 

 

    
 
 
             

w(t) = HTα(t)

HTα(t) = HT α(t−1) − η

h(x1)T(w(t−1)) − y1

h(x2)T(w(t−1)) − y2
⋮

h(xn)T(w(t−1)) − yn

= HT{α(t−1) − η(HHTα(t−1) − y)}
7
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⏟
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Kernel trick when k ≫ n
• the kernel with respect to a feature map  is defined as 

 
      


• the kernel trick for gradient update can be written as 


• compute the kernel matrix  as 


• for 


• 


• this is much more efficient requiring memory of size  and per iteration 
computational complexity of 


• fundamentally, all we need to know about the feature map  is 
captured in a much more compact matrix 

h : ℝd → ℝk

K : ℝd × ℝd → ℝ
(xi, xj) ↦ K(xi, xj) = h(xi)Th(xj)

K ∈ ℝn×n Kij = K(xi, xj)
t = 1,…, T
α(t) ← α(t−1) − η(Kα(t−1) − y)

n
n2

h(xi)′ s
K

8
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Closed-form solution to kernel regression
• in practice you first choose a kernel to be used 


• and compute the kernel matrix  for training data

• then the regularized squared loss is  

           
can be written (using ) as  
          
                      

• as we assume  and  is invertible (and note that  by definition),  
the minimizer is 


• this follows from the fact that  
           


• also it follows that  
             


• and the prediction is  

             


• this is a weighted sum of kernel functions  “centered” at ’s, weighted by 
the learned parameter ’s

K = HHT ∈ ℝn×n

ℒ(w) = ∥Hw − y∥2
2 + λ∥w∥2

2
w = HTα

ℒ(α) = ∥HHTα − y∥2
2 + λαTHHTα

= ∥Kα − y∥2
2 + λαTKα

k ≫ n K K = KT

α̂ = (K + λI)−1y

∇αℒ(α) = 2KT(Kα − y) + 2λKα

ŵ = HTα̂ = HT(HHT + λI)−1y

f(x) = h(x)Tŵ = h(x)THTα̂ =
n

∑
i=1

K(xi, x)α̂i

K(xi, ⋅ ) xi
α̂i11



RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

• predictor is taking weighted sum of  kernel functions centered at each sample pointsn

12

xi

σ



RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }
• 


• The bandwidth  of the kernel regularizes the predictor
ℒ(w) = ∥Hw − y∥2

2 + λ∥w∥2
2

σ2
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From kernels to feature maps
• recall that selecting the right feature map   

is important for the model to be accurate, 

• now that (potentially challenging) task of feature engineering can 

be replaced by selecting the kernel  
                                  


• in particular, we do not even need to write down the feature map 
, we only need to ensure existence, i.e. make sure that the 

kernel  we use is derived from some feature map 


• but first, let’s look at some concrete examples


• linear kernel  
corresponds to 


• affine kernel  

corresponds to 

h( ⋅ )

K(xi, xj) = h(xi)Th(xj)

h( ⋅ )
K( ⋅ , ⋅ )

K(xi, xj) = xT
i xj

h(xi) = xi

K(xi, xj) = xT
i xj + 1

h(xi) = [1
xi]
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From kernels to feature maps
• kernel  

                           

 

                           

 

feature map is , which is the second order 

polynomial features


• similarly, kernel  

 

feature map is all monomials up to degree two

K(xi, xj) = (xT
i xj)2

= (
d

∑
i′ =1

xi[i′ ]xj[i′ ] )
2

=
d

∑
i′ ,i′ ′ =1

xi[i′ ]xi[i′ ′ ]xj[i′ ]xj[i′ ′ ]

h(xi) =

xi[1]xi[1]
xi[1]xi[2]

⋮
xi[d]xi[d]

K(xi, xj) = (xT
i xj + 1)2

= ∑
i′ ,i′ ′ 

(xi[i]xi[i′ ′ ])(xj[i′ ]xj[i′ ′ ]) +
d

∑
i′ =1

2xi[i′ ]xj[i′ ] + 1
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From kernels to feature maps

• in general  corresponds to 
polynomial feature map of degree 


• Gaussian kernel is  

               

which is a common measure of similarity between two 
points 


• finding the corresponding feature map is a homework 
problem

K(xi, xj) = (xT
i xj + 1)p

p

K(xi, xj) = exp {
−∥xi − xj∥2

2

2σ2 }
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classification with kernel

•   

using kernels, it can be simplified as  

ŵ = arg min
w

n

∑
i=1

max{0,1 − yi(b + wTh(xi))} + λ∥w∥2
2

α̂ = arg min
α

n

∑
i=1

max{0,1 − yi(b + αTK[: , i])} + λαTKα

17

overfitting when  is small with RBF kernelσ
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Bootstrap 
finding confidence interval



confidence interval
• suppose you have training data  drawn i.i.d. from some true 

distribution 


• we train a kernel ridge regressor, with some choice of a kernel
 

       

• the resulting predictor is  

       ,  

where  
         


• we wish to build a confidence interval  
for our predictor , using  
5% and 95% percentiles 

{(xi, yi)}n
i=1

Px,y

K : ℝd×d → ℝ
minmizeα ∥Kα − y∥2

2 + λαTKα

f(x) =
n

∑
i=1

K(xi, x)α̂i

α̂ = (K + λI)−1y ∈ ℝn

f(x)
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Example of 5% and 95% percentile 
curves for predictor f(x)



confidence interval
• let's focus on a single 


• note that our predictor  is a random  
variable, whose randomness comes  
from the training data 


• if we know the statistics  
(in particular the CDF of the  
random variable ) of the predictor,  
then the confidence interval with  
confidence level 90% is defined as 


• as we do not have the cumulative distribution function (CDF), 
we need to approximate them

x ∈ ℝd

f(x)

Strain = {(xi, yi)}n
i=1

f(x)

20

f(x)

CDF( f(x))
0.95

0.05
5% percentile 95% percentile

if we know the distribution of our predictor ,

the green line is the expectation  
and the black dashed lines are the  
5% and 95% percentiles in the figure above 

f(x)
𝔼[ f(x)]

0.90



confidence interval
• hypothetically, if we can sample as many times as we want,  

then we can train  i.i.d. predictors, each trained on  fresh samples to 
get empirical estimate of the CDF of 


• for b=1,…,B


• draw  fresh samples

• train a regularized kernel  

regression 


• Predict 


• let the empirical CDF of those B predictors 
 be , defined as  

 

      


• compute the confidence interval using 

B ∈ ℤ+ n
̂y = f(x)

n

α*(b)

̂y(b) = (α*(b))Th(x)

{ ̂y(b)}B
b=1

̂CDF ( ̂y)

̂CDF ( ̂y) =
1
B

B

∑
b=1

I{ ̂y(b) ≤ ̂y } =
1
B

B

∑
b=1

I{ (α*(b))Th(x) ≤ ̂y }

̂CDF ( ̂y)21

̂y

CDF( ̂y)

̂CDF ( ̂y)



Bootstrap 
• as we cannot sample repeatedly (in typical cases), we use 

bootstrap samples instead 

• bootstrap is a general tool for assessing statistical accuracy

• we learn it in the context of confidence interval for trained models


• a bootstrap dataset is created from the training dataset by  
taking  (the same size as the training data) examples uniformly at 
random with replacement from the training data  

• for b=1,…,B


• create a bootstrap dataset 


• train a regularized kernel regression 


• predict    


• compute the empirical CDF from the bootstrap datasets, and 
compute the confidence interval

n
{(xi, yi)}n

i=1

S(b)
bootstrap

α*(b)

(α*(b))Th(x)
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bootstrap 
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Figures from Hastie et al

training a single predictor multiple bootstrapped 
predictors 90% confidence interval


