
Perceptron and SVM

Sewoong Oh


CSE446

University of Washington



Perceptron algorithm

2



The perceptron algorithm
• One of the oldest algorithm in machine learning introduced by 

Rosenblatt in 1958

• the perceptron algorithm is an online algorithm for learning a linear 

classifier  
                       


• an online algorithm is an iterative algorithm that takes a single paired 
example  at -iteration, and computes the updated iterate 

 according to some rule

• for example, stochastic gradient descent algorithm with a mini-batch 

size of , that runs for  iterations and stops, can be considered 
an online algorithm (where  is the number of training samples)

̂y = fw(x) = w0 + w1x[1] + ⋯

(xt, yt) t
w(t+1)

m = 1 n
n

3 Interactive demo: https://codepen.io/bagrounds/full/wdqypY

https://codepen.io/bagrounds/full/wdqypY


The perceptron algorithm
• given a stream of samples 


• initialize: ,  
(one could normalize all ’s to be norm 1)


• notice that we indexed samples by subscript  to match the iterations, as it is an 
online algorithm


• for 


• if no mistake on current sample , i.e.  
then do nothing 
                     


• If mistake, then   
                    


• this makes sense, as if  and   (for example), then  
                 


• every time we make a mistake, the parameter move in a direction that is less 
likely to make the same mistake

{(x1, y1), (x2, y2), (x3, y3)…}
w(0) = 0

xt = [xt[0] = 1,xt[1], xt[2], ⋯]T

t

t = 0,1,⋯
(xt, yt) yt = sign((w(t))T xt)

w(t+1) ← w(t)

w(t+1) ← w(t) + ytxt

yt = − 1 (w(t))T xt > 0
(w(t+1))T xt = (w(t))T xt + yt∥xt∥2

<0
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Can we derive perceptron algorithm?
• to get an online algorithm from gradient descent, suppose we apply stochastic gradient 

descent with mini-batch size , and run the algorithm for  iterations


• Consider a ReLU loss is  
   


•  is also known as margin, and  
minimizing the ReLU loss is trying to maximize the margin 
of the current point


• the sub-gradient is  
 
 
 
    
 
 
 

• the sub-gradient descent update with step size one is 
      
only when there is a mistake, with a specific choice of  
updating with sub-gradient  at the non-differentiable points

m = 1 n

ℓ(wT xi, yi) = max{−yi (wT xi) , 0}

yi(wT xi)

∂ℓ(wT xi, yi) =

w(t+1) ← w(t) + ytxt

∂ℓ(wT xi, yi) = 05

when true yi = − 1
wT xi

8
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>>:

0 if yi(wTxi) > 0
�yixi if yi(wTxi) < 0

[0 , +1]xi if yi(wTxi) = 0 and yi = �1
[� 1 , 0]xi if yi(wTxi) = 0 and yi = 1

<latexit sha1_base64="DicFn5LFL7yHmnq4F+AnfJfCBlI=">AAAC5nicnVJNb9QwEHXCVwkfXeDIxWIFKmK7cihqQaKoggvHInXbSusQOc5k16rjRLYDjaL8AC4cQIgrv4kbPwYJJw0IKL0wkqXn92aePWMnpRTGEvLN88+dv3Dx0srl4MrVa9dXRzdu7pui0hxmvJCFPkyYASkUzKywEg5LDSxPJBwkRy86/eANaCMKtWfrEqKcLZTIBGfWUfHoO5WQWdrggCawEKphWrO6bbRsA4LxPUwtHNsGiwy3dSzW3r7eO47F/WeE0mDdEW5zdtbTLgs38xYTOpnQyYMQN1FLJ9iJZ9Vsk4FnKu2F7fXwp4tDnQ35H5cwoKDSob2AarFY2mk8GpMp6QOfBuEAxmiI3Xj0laYFr3JQlktmzDwkpY2cqxVcgvOtDJSMH7EFzB1ULAcTNf0ztfiuY1KcFdotZXHP/l7RsNyYOk9cZs7s0vytdeS/tHlls8dRI1RZWVD85KCsktgWuHtznAoN3MraAca1cHfFfMk049b9jKAfwpMuNn+1fBrsP5yGG9ONV4/GO8+Hcayg2+gOWkMh2kI76CXaRTPEPe698z54H/2l/97/5H8+SfW9oeYW+iP8Lz8ALnXipA==</latexit>



Linear separability and margin
• a set of data is linearly separable with a margin  if  

there exists a hyperplane  such that the closest 
point to the hyperplane is at least distance  away, and positive and 
negative examples are all correctly separated

γ > 0
{x | wT x + b = 0}

γ
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• maximum margin of a given dataset is the largest  achievable  
that linearly separates the dataset with margin 

γ
γ

{x | wT x + b = 0} {x | wT x + b = 0}



Perceptron analysis
• consider an epoch based perceptron algorithm, where we run repeat the 

perceptron algorithm for many epochs, where an epoch is one run of 
perceptron algorithm that sees all training data exactly once


• Theorem [Block,Novicoff, 1962]


• given a dataset which is linearly separable with margin 

• suppose each input vector has norm bounded by  

                 
for all 


• then, the number of mistakes made by the final output of a perceptron 
algorithm on the training data is upper bounded by 

      the number of mistakes made during the training process  


• this does not depend on the number of samples or the number of 
epochs


• or the order the data was shown

• Even if we run for many epochs, the algorithm converges and stops 

changing after a certain number of mistakes have been made

γ

∥xi∥2
2 ≤ R

i

≤
R2

γ2
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Proof of the “mistake lemma”
• let  be the number of mistakes made at time 


• if we make a mistake with  on data ,  
then observe that 


• let  be the optimal linear separator with ,  
achieving margin  on the given dataset, then since we made a mistake 
     
using a definition of margin (coming up later) that  
    for all  in the training data, we get 
                                  
hence, every time you make a mistake, perceptron algorithm makes a 
progress towards the optimal separator by 


• this implies that 


• if we make a mistake at , then (using ) 



• Since  grows by at most  at every mistake, 


• together, they imply  
                 


• this completes the proof, after solving for 

Mt t
w(t) (xt, yt)

yt((w(t−1))T xt) ≤ 0
w* ∥w*∥2 = 1

γ
wT

* w(t) = wT
* (w(t−1) + ytxt) = w*w(t−1) + yt(wT

* xt)

yt(wT
* xt) ≥ γ t

wT
* w(t) ≥ wT

* w(t−1) + γ

γ
wT

* w(t) ≥ γMt

t yt((w(t−1))T xt) ≤ 0
∥w(t)∥2

2 = ∥w(t−1)∥2
2 + 2yt((w(t−1))T xt)) + ∥x∥2

2 ≤ ∥w(t−1)∥2
2 + 0 + ∥x∥2

2 ≤ ∥w(t−1)∥2
2 + R2

∥w(t)∥2
2 R2 ∥w(t)∥2

2 ≤ R2Mt

γMt ≤ wT
* w(t) ≤ ∥w*∥2∥w(t)∥2 ≤ R Mt

Mt9



• (good) for linearly separable datasets, 

• even if infinite examples are shown, the resulting number of 

mistakes is fixed  


• (bad) however, real world is not linearly separable

• it is not clear what the algorithm does


• (bad) even if the data is linearly separable,  
margin can be very small


• so perceptron algorithm is never used in practice
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Support Vector Machines (SVM)



How do we choose the best linear classifier?
• for linearly separable datasets, maximum margin classifier is a natural 

choice

• large margin implies that the decision boundary can change without losing 

accuracy, so the learned model is more robust against new data points

• informally, margin of a set of examples to a decision boundary is  

the distance to the closest point to the decision boundary
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Geometric margin
• given a set of training examples 


• and a linear classifier 

• such that the decision boundary is  

a separating hyperplane , 

which is the set of points that are orthogonal to  with a shift of 


• note that we used to write the offset as , but for the purpose of 
discussing the margin, it is easier to explicitly have a separate notation for the 
offset 


• we define functional margin of   
with respect to a training example  as 
the distance from the point  to the  
decision boundary, which is 
 

           

{(xi, yi)}n
i=1

(w, b) ∈ ℝd × ℝ

{x |b + w1x[1] + w2x[2] + ⋯ + wdx[d]

wT x+b

= 0}

w b
w[0]

b

w
(xi, yi)

(xi, yi)

γi = yi
(wT xi + b)

∥w∥213

+
+

+

+

+

+
-

-

-
-

- -

--

-

(xi, yi = + 1)

w

{x | wT x + b = 0}

γi



Geometric margin
• the distance  from a hyperplane  to a point  can 

be computed geometrically as follows


• We know that if you move from   
in the negative direction of  by length ,  
you arrive at the line, which can be written as 
 
       is in 


• so we can plug the point in the formula: 
 
        

which is 
 

       

and hence 

      ,           and we multiply it by  s=o that for negative 

samples we use  instead of 

γi {x |wT x + b = 0} xi

xi
w γi

( xi −
w

∥w∥2
γi ) {x | wT x + b = 0}

wT( xi −
w

∥w∥2
γi ) + b = 0

wT xi −
∥w∥2

2

∥w∥2
γi + b = 0

γi =
wT xi + b

∥w∥2
yi

−w w14
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xi

w

{x | wT x + b = 0}

γi



Geometric margin
• the margin with respect to a set 

is defined as  
 
       


• among all linear classifiers,  
we would like to find one that has 
the maximum margin

γ =
n

min
i=1

γi
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Maximum margin classifier
• we propose the following optimization problem: 

 
        
 

       


• if we fix , above optimization gives the margin


• together with , this finds the classifier with the maximum margin


• note that this problem is scale invariant in , i.e. changing a  to  does 
not change either the feasibility or the objective value


• the above optimization looks difficult, so we transform it using reparametrization 
 
       
     

       

                            


• the optimal solution does not change, as the solutions to the original  
problem did not depend on , and only depends on the direction of  

maximizew∈ℝd,b∈ℝ,γ∈ℝ γ

subject to
yi(wT xi + b)

∥w∥2
≥ γ  for all i ∈ {1,…, n}

(w, b)
(w, b)

(w, b) (w, b) (2w,2b)

maximizew∈ℝd,b∈ℝ,γ∈ℝ γ

subject to
yi(wT xi + b)

∥w∥2
≥ γ  for all i ∈ {1,…, n}

∥w∥2 =
1
γ

∥w∥2 w
16

(maximize the margin)

(s.t.  is a lower bound on  
the margin)
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•        
     

       

                            


• the above optimization still looks difficult, but can be transformed into  

       

     

       

 
 
which simplifies to 
 
       
     
       

• this is a quadratic program with linear constraints, which can be easily solved


• once the optimal solution is found, the margin of that classifier  is 

maximizew∈ℝd,b∈ℝ,γ∈ℝ γ

subject to
yi(wT xi + b)

∥w∥2
≥ γ  for all i ∈ {1,…, n}

∥w∥2 =
1
γ

maximizew∈ℝd,b∈ℝ
1

∥w∥2

subject to
yi(wT xi + b)

∥w∥2
≥

1
∥w∥2

 for all i ∈ {1,…, n}

minimizew∈ℝd,b∈ℝ ∥w∥2
2

subject to yi(wT xi + b) ≥ 1  for all i ∈ {1,…, n}

(w, b)
1

∥w∥217

(maximize the margin)

(now  is a lower bound  

on the margin)

1
∥w∥2



What if the data is not separable?
• we cheated a little in the sense that the reparametrization of 

 is possible only if the the margins are positive,  

i.e. the data is linearly separable with a positive margin

• otherwise, there is no feasible solution

• the examples at the margin are called support vectors


•

∥w∥2 =
1
γ

18

{x | wT x + b = 0}

subject to yi(wT xi + b) ≥ 1  for all i ∈ {1,…, n}
minimizew∈ℝd,b∈ℝ ∥w∥2

2

{x | wT x + b = + 1}

{x | wT x + b = − 1}



Two issues
• max-margin formulation we proposed is sensitive to outliers
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What if the data is not separable?
• we introduce slack so that 

some points can violate the 
margin condition 
 
     yi(wT xi + b) ≥ 1 − ξi

20

{x | wT x + b = 0}

{x | wT x + b = + 1}

{x | wT x + b = − 1}

• this gives a new optimization problem with some positive constant  

       

     
      


                                               

the (re-scaled) margin (for each sample) is allowed to be less than one, 
but you pay  in the cost, and  balances the two goals: 
maximizing the margin for most examples vs. having small number of violations

c ∈ ℝ
minimizew∈ℝd,b∈ℝ,ξ∈ℝn ∥w∥2

2 + c
n

∑
i=1

ξi

subject to yi(wT xi + b) ≥ 1 − ξi  for all i ∈ {1,…, n}
ξi ≥ 0  for all i ∈ {1,…, n}

cξi c



Support Vector Machine
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• for the optimization problem  

       

     
      


                                               


notice that at optimal solution, 's satisfy


•  if margin is big enough , or 


• , if the example is within the margin 


• so one can write 


• , which gives  

                  

minimizew∈ℝd,b∈ℝ,ξ∈ℝn ∥w∥2
2 + c

n

∑
i=1

ξi

subject to yi(wT xi + b) ≥ 1 − ξi  for all i ∈ {1,…, n}
ξi ≥ 0  for all i ∈ {1,…, n}

ξi

ξi = 0 yi(wT xi + b) ≥ 1
ξi = 1 − yi(wT xi + b) yi(wT xi + b) < 1

ξi = max{0,1 − yi(wT xi + b)}

minimizew∈ℝd,b∈ℝ
1
c

∥w∥2
2 +

n

∑
i=1

max{0,1 − yi(wT xi + b)}



Hinge loss with L2 regularizer
• Support vector machine: 

 
      

 


• instead, if we decided to train a linear classifier  
with empirical risk on hinge loss and L2 regularizer, we 
get the same  
 

 

 
where 

minimizew∈ℝd,b∈ℝ
1
c

∥w∥2
2 +

n

∑
i=1

max{0,1 − yi(wT xi + b)}

(w, b)

minimizew∈ℝd,b∈ℝ λ∥w∥2
2 +

n

∑
i=1

ℓ(wT xi + b, yi)

ℓ( ̂y, y) = max{0,1 − y ̂y}

22



Hinge loss

• for , the sub-gradient is  
 
 
    


• for , the sub-gradient is 
 
 
   

ℓ( ̂y, y) = max{0,1 − y ̂y}

∂ ̂yℓ( ̂y, − 1) =

ℓ(wT x + b, y)

∂wℓ(wT x + b, − 1) = ∂ ̂y(wT x + b, − 1) x
23
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1 ŷ > �1
<latexit sha1_base64="/Gy5ll7gQSNu6nR4zj5n0JxTzyg="></latexit>

̂y ̂y

y = − 1 y = + 1



Sub-gradient descent for SVM
• SVM is the solution of 

 




• as it is non-differentiable, we solve it using sub-gradient descent

• which is exactly the same as gradient descent, except when we are at a 

non-differentiable point, we take one of the sub-gradients instead of the 
gradient (recall sub-gradient is a set)


• this means that we can take (a generic form derived from previous page) 
               
and apply  
 
            

 

minimizew∈ℝd,b∈ℝ
1
c

∥w∥2
2 +

n

∑
i=1

max{0,1 − yi(wT xi + b)}

∂wℓ(wT xi + b, yi) = I{yi(wT xi + b) ≤ 1}(−yixi)

w(t+1) ← w(t) − η (
n

∑
i=1

I{yi((w(t))T xi + b(t)) ≤ 1}(−yixi) +
2
c

w(t))
b(t+1) ← b(t) − η

n

∑
i=1

I{yi((w(t))T xi + b(t)) ≤ 1)}(−yi)
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