
Perceptron and SVM

Sewoong Oh

CSE446

University of Washington

Perceptron algorithm

2

The perceptron algorithm
• One of the oldest algorithm in machine learning introduced by

Rosenblatt in 1958

• the perceptron algorithm is an online algorithm for learning a linear

classifier  

• an online algorithm is an iterative algorithm that takes a single paired
example at -iteration, and computes the updated iterate

 according to some rule

• for example, stochastic gradient descent algorithm with a mini-batch

size of , that runs for iterations and stops, can be considered
an online algorithm (where is the number of training samples)

̂y = fw(x) = w0 + w1x[1] + ⋯

(xt, yt) t
w(t+1)

m = 1 n
n

3 Interactive demo: https://codepen.io/bagrounds/full/wdqypY

https://codepen.io/bagrounds/full/wdqypY

The perceptron algorithm
• given a stream of samples

• initialize: ,  
(one could normalize all ’s to be norm 1)

• notice that we indexed samples by subscript to match the iterations, as it is an
online algorithm

• for

• if no mistake on current sample , i.e.  
then do nothing 

• If mistake, then  

• this makes sense, as if and (for example), then  

• every time we make a mistake, the parameter move in a direction that is less
likely to make the same mistake

{(x1, y1), (x2, y2), (x3, y3)…}
w(0) = 0

xt = [xt[0] = 1,xt[1], xt[2], ⋯]T

t

t = 0,1,⋯
(xt, yt) yt = sign((w(t))T xt)

w(t+1) ← w(t)

w(t+1) ← w(t) + ytxt

yt = − 1 (w(t))T xt > 0
(w(t+1))T xt = (w(t))T xt + yt∥xt∥2

<0

4

Can we derive perceptron algorithm?
• to get an online algorithm from gradient descent, suppose we apply stochastic gradient

descent with mini-batch size , and run the algorithm for iterations

• Consider a ReLU loss is  

• is also known as margin, and  
minimizing the ReLU loss is trying to maximize the margin 
of the current point

• the sub-gradient is  
 
 
 
  
 
 
 

• the sub-gradient descent update with step size one is 
  
only when there is a mistake, with a specific choice of  
updating with sub-gradient at the non-differentiable points

m = 1 n

ℓ(wT xi, yi) = max{−yi (wT xi) , 0}

yi(wT xi)

∂ℓ(wT xi, yi) =

w(t+1) ← w(t) + ytxt

∂ℓ(wT xi, yi) = 05

when true yi = − 1
wT xi

8
>><

>>:

0 if yi(wTxi) > 0
�yixi if yi(wTxi) < 0

[0 , +1]xi if yi(wTxi) = 0 and yi = �1
[� 1 , 0]xi if yi(wTxi) = 0 and yi = 1

<latexit sha1_base64="DicFn5LFL7yHmnq4F+AnfJfCBlI=">AAAC5nicnVJNb9QwEHXCVwkfXeDIxWIFKmK7cihqQaKoggvHInXbSusQOc5k16rjRLYDjaL8AC4cQIgrv4kbPwYJJw0IKL0wkqXn92aePWMnpRTGEvLN88+dv3Dx0srl4MrVa9dXRzdu7pui0hxmvJCFPkyYASkUzKywEg5LDSxPJBwkRy86/eANaCMKtWfrEqKcLZTIBGfWUfHoO5WQWdrggCawEKphWrO6bbRsA4LxPUwtHNsGiwy3dSzW3r7eO47F/WeE0mDdEW5zdtbTLgs38xYTOpnQyYMQN1FLJ9iJZ9Vsk4FnKu2F7fXwp4tDnQ35H5cwoKDSob2AarFY2mk8GpMp6QOfBuEAxmiI3Xj0laYFr3JQlktmzDwkpY2cqxVcgvOtDJSMH7EFzB1ULAcTNf0ztfiuY1KcFdotZXHP/l7RsNyYOk9cZs7s0vytdeS/tHlls8dRI1RZWVD85KCsktgWuHtznAoN3MraAca1cHfFfMk049b9jKAfwpMuNn+1fBrsP5yGG9ONV4/GO8+Hcayg2+gOWkMh2kI76CXaRTPEPe698z54H/2l/97/5H8+SfW9oeYW+iP8Lz8ALnXipA==</latexit>

Linear separability and margin
• a set of data is linearly separable with a margin if  

there exists a hyperplane such that the closest
point to the hyperplane is at least distance away, and positive and
negative examples are all correctly separated

γ > 0
{x | wT x + b = 0}

γ

6

+

+
+

+

+

+

+

+
-

-

-
-

- -

--

-

γ

+

+
+

+

+

+

+

+
-

-

-
-

- -

--

-

γ

• maximum margin of a given dataset is the largest achievable  
that linearly separates the dataset with margin

γ
γ

{x | wT x + b = 0} {x | wT x + b = 0}

Perceptron analysis
• consider an epoch based perceptron algorithm, where we run repeat the

perceptron algorithm for many epochs, where an epoch is one run of
perceptron algorithm that sees all training data exactly once

• Theorem [Block,Novicoff, 1962]

• given a dataset which is linearly separable with margin

• suppose each input vector has norm bounded by  

  
for all

• then, the number of mistakes made by the final output of a perceptron
algorithm on the training data is upper bounded by 

 the number of mistakes made during the training process

• this does not depend on the number of samples or the number of
epochs

• or the order the data was shown

• Even if we run for many epochs, the algorithm converges and stops

changing after a certain number of mistakes have been made

γ

∥xi∥2
2 ≤ R

i

≤
R2

γ2

7

Proof of the “mistake lemma”
• let be the number of mistakes made at time

• if we make a mistake with on data ,  
then observe that

• let be the optimal linear separator with ,  
achieving margin on the given dataset, then since we made a mistake 
  
using a definition of margin (coming up later) that  
 for all in the training data, we get 
  
hence, every time you make a mistake, perceptron algorithm makes a
progress towards the optimal separator by

• this implies that

• if we make a mistake at , then (using) 

• Since grows by at most at every mistake,

• together, they imply  

• this completes the proof, after solving for

Mt t
w(t) (xt, yt)

yt((w(t−1))T xt) ≤ 0
w* ∥w*∥2 = 1

γ
wT

* w(t) = wT
* (w(t−1) + ytxt) = w*w(t−1) + yt(wT

* xt)

yt(wT
* xt) ≥ γ t

wT
* w(t) ≥ wT

* w(t−1) + γ

γ
wT

* w(t) ≥ γMt

t yt((w(t−1))T xt) ≤ 0
∥w(t)∥2

2 = ∥w(t−1)∥2
2 + 2yt((w(t−1))T xt)) + ∥x∥2

2 ≤ ∥w(t−1)∥2
2 + 0 + ∥x∥2

2 ≤ ∥w(t−1)∥2
2 + R2

∥w(t)∥2
2 R2 ∥w(t)∥2

2 ≤ R2Mt

γMt ≤ wT
* w(t) ≤ ∥w*∥2∥w(t)∥2 ≤ R Mt

Mt9

• (good) for linearly separable datasets,

• even if infinite examples are shown, the resulting number of

mistakes is fixed

• (bad) however, real world is not linearly separable

• it is not clear what the algorithm does

• (bad) even if the data is linearly separable,  
margin can be very small

• so perceptron algorithm is never used in practice

10

+
+

+
+

+
+

+--
--
- -

--
-
-

-

+ +

-- -

- -
--

+
+

+
+

+

+

+

+--
--
- -

--
-

γ

11

Support Vector Machines (SVM)

How do we choose the best linear classifier?
• for linearly separable datasets, maximum margin classifier is a natural

choice

• large margin implies that the decision boundary can change without losing

accuracy, so the learned model is more robust against new data points

• informally, margin of a set of examples to a decision boundary is  

the distance to the closest point to the decision boundary

12

+

+
+

+

+

+

+

+
-

-

-
-

- -

--

-

Geometric margin
• given a set of training examples

• and a linear classifier

• such that the decision boundary is  

a separating hyperplane , 

which is the set of points that are orthogonal to with a shift of

• note that we used to write the offset as , but for the purpose of
discussing the margin, it is easier to explicitly have a separate notation for the
offset

• we define functional margin of  
with respect to a training example as 
the distance from the point to the  
decision boundary, which is 
 

{(xi, yi)}n
i=1

(w, b) ∈ ℝd × ℝ

{x |b + w1x[1] + w2x[2] + ⋯ + wdx[d]

wT x+b

= 0}

w b
w[0]

b

w
(xi, yi)

(xi, yi)

γi = yi
(wT xi + b)

∥w∥213

+
+

+

+

+

+
-

-

-
-

- -

--

-

(xi, yi = + 1)

w

{x | wT x + b = 0}

γi

Geometric margin
• the distance from a hyperplane to a point can

be computed geometrically as follows

• We know that if you move from  
in the negative direction of by length ,  
you arrive at the line, which can be written as 
 
 is in

• so we can plug the point in the formula: 
 
  

which is 
 

  

and hence 

 , and we multiply it by s=o that for negative

samples we use instead of

γi {x |wT x + b = 0} xi

xi
w γi

(xi −
w

∥w∥2
γi) {x | wT x + b = 0}

wT(xi −
w

∥w∥2
γi) + b = 0

wT xi −
∥w∥2

2

∥w∥2
γi + b = 0

γi =
wT xi + b

∥w∥2
yi

−w w14

+

+
+

-
-

-

- -

--

-

xi

w

{x | wT x + b = 0}

γi

Geometric margin
• the margin with respect to a set 

is defined as  
 

• among all linear classifiers,  
we would like to find one that has 
the maximum margin

γ =
n

min
i=1

γi

15

+
+

+

+

+

+
-

-

-
-

- -

--

-

w

{x | wT x + b = 0}

γ

Maximum margin classifier
• we propose the following optimization problem: 

 
  
 

• if we fix , above optimization gives the margin

• together with , this finds the classifier with the maximum margin

• note that this problem is scale invariant in , i.e. changing a to does
not change either the feasibility or the objective value

• the above optimization looks difficult, so we transform it using reparametrization 
 
  
  

  

• the optimal solution does not change, as the solutions to the original  
problem did not depend on , and only depends on the direction of

maximizew∈ℝd,b∈ℝ,γ∈ℝ γ

subject to
yi(wT xi + b)

∥w∥2
≥ γ for all i ∈ {1,…, n}

(w, b)
(w, b)

(w, b) (w, b) (2w,2b)

maximizew∈ℝd,b∈ℝ,γ∈ℝ γ

subject to
yi(wT xi + b)

∥w∥2
≥ γ for all i ∈ {1,…, n}

∥w∥2 =
1
γ

∥w∥2 w
16

(maximize the margin)

(s.t. is a lower bound on  
the margin)

γ

+

+
+

+

+

+

-
-

-
-

- -

--

-

γ

•  
  

  

• the above optimization still looks difficult, but can be transformed into  

  

  

  

 
 
which simplifies to 
 
  
  
  

• this is a quadratic program with linear constraints, which can be easily solved

• once the optimal solution is found, the margin of that classifier is

maximizew∈ℝd,b∈ℝ,γ∈ℝ γ

subject to
yi(wT xi + b)

∥w∥2
≥ γ for all i ∈ {1,…, n}

∥w∥2 =
1
γ

maximizew∈ℝd,b∈ℝ
1

∥w∥2

subject to
yi(wT xi + b)

∥w∥2
≥

1
∥w∥2

 for all i ∈ {1,…, n}

minimizew∈ℝd,b∈ℝ ∥w∥2
2

subject to yi(wT xi + b) ≥ 1 for all i ∈ {1,…, n}

(w, b)
1

∥w∥217

(maximize the margin)

(now is a lower bound  

on the margin)

1
∥w∥2

What if the data is not separable?
• we cheated a little in the sense that the reparametrization of

 is possible only if the the margins are positive,  

i.e. the data is linearly separable with a positive margin

• otherwise, there is no feasible solution

• the examples at the margin are called support vectors

•

∥w∥2 =
1
γ

18

{x | wT x + b = 0}

subject to yi(wT xi + b) ≥ 1 for all i ∈ {1,…, n}
minimizew∈ℝd,b∈ℝ ∥w∥2

2

{x | wT x + b = + 1}

{x | wT x + b = − 1}

Two issues
• max-margin formulation we proposed is sensitive to outliers

19

+
+

+
+

+

+

+

+--
--
- -

--
-

+
+

+
+

+

+

+

+--
--
- -

--
-

-

• it does not generalize to non-separable datasets

What if the data is not separable?
• we introduce slack so that

some points can violate the
margin condition 
 
 yi(wT xi + b) ≥ 1 − ξi

20

{x | wT x + b = 0}

{x | wT x + b = + 1}

{x | wT x + b = − 1}

• this gives a new optimization problem with some positive constant  

  

  

the (re-scaled) margin (for each sample) is allowed to be less than one, 
but you pay in the cost, and balances the two goals: 
maximizing the margin for most examples vs. having small number of violations

c ∈ ℝ
minimizew∈ℝd,b∈ℝ,ξ∈ℝn ∥w∥2

2 + c
n

∑
i=1

ξi

subject to yi(wT xi + b) ≥ 1 − ξi for all i ∈ {1,…, n}
ξi ≥ 0 for all i ∈ {1,…, n}

cξi c

Support Vector Machine

21

• for the optimization problem  

  

  

notice that at optimal solution, 's satisfy

• if margin is big enough , or

• , if the example is within the margin

• so one can write

• , which gives

minimizew∈ℝd,b∈ℝ,ξ∈ℝn ∥w∥2
2 + c

n

∑
i=1

ξi

subject to yi(wT xi + b) ≥ 1 − ξi for all i ∈ {1,…, n}
ξi ≥ 0 for all i ∈ {1,…, n}

ξi

ξi = 0 yi(wT xi + b) ≥ 1
ξi = 1 − yi(wT xi + b) yi(wT xi + b) < 1

ξi = max{0,1 − yi(wT xi + b)}

minimizew∈ℝd,b∈ℝ
1
c

∥w∥2
2 +

n

∑
i=1

max{0,1 − yi(wT xi + b)}

Hinge loss with L2 regularizer
• Support vector machine: 

 

 

• instead, if we decided to train a linear classifier
with empirical risk on hinge loss and L2 regularizer, we
get the same  
 

 

 
where

minimizew∈ℝd,b∈ℝ
1
c

∥w∥2
2 +

n

∑
i=1

max{0,1 − yi(wT xi + b)}

(w, b)

minimizew∈ℝd,b∈ℝ λ∥w∥2
2 +

n

∑
i=1

ℓ(wT xi + b, yi)

ℓ(̂y, y) = max{0,1 − y ̂y}

22

Hinge loss

• for , the sub-gradient is  
 
 

• for , the sub-gradient is 
 
 

ℓ(̂y, y) = max{0,1 − y ̂y}

∂ ̂yℓ(̂y, − 1) =

ℓ(wT x + b, y)

∂wℓ(wT x + b, − 1) = ∂ ̂y(wT x + b, − 1) x
23

8
<

:

0 ŷ < �1
[0, 1] ŷ = �1

1 ŷ > �1
<latexit sha1_base64="/Gy5ll7gQSNu6nR4zj5n0JxTzyg=">AAACWXicbVFdb9MwFHUC20r4WGGPvFhUTDywKlmnDSRAE7zscUjrNqmOKse9aa06TmTfIEVW/iQPSIi/wgNuFzbGdiRLR+fcD/s4q5S0GMc/g/DBw43Nrd6j6PGTp8+2+89fnNuyNgLGolSlucy4BSU1jFGigsvKAC8yBRfZ8svKv/gGxspSn2FTQVrwuZa5FBy9NO1XTEGOzEUsg7nUjhvDm9YZ1UaUxnSXsgVH17Qf9hLKmNfcpI3fJi5tb7yPf72E3oif9pKIgZ51E2nEjJwvcDjtD+JhvAa9S5KODEiH02n/O5uVoi5Ao1Dc2kkSV5j6sSiFgjZitYWKiyWfw8RTzQuwqVsn09LXXpnRvDT+aKRr9d8OxwtrmyLzlQXHhf3fW4n3eZMa83epk7qqEbS4WpTXimJJVzHTmTQgUDWecGGkvysVC264QP8Z0TqE9yscXj/5LjnfHyaj4ejrweD4cxdHj7wkr8gbkpAjckxOyCkZE0F+kN/BRrAZ/AqDsBdGV6Vh0PXskFsId/4AAi+vaQ==</latexit>

̂y ̂y

y = − 1 y = + 1

Sub-gradient descent for SVM
• SVM is the solution of 

 

• as it is non-differentiable, we solve it using sub-gradient descent

• which is exactly the same as gradient descent, except when we are at a

non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

• this means that we can take (a generic form derived from previous page) 
  
and apply  
 

 

minimizew∈ℝd,b∈ℝ
1
c

∥w∥2
2 +

n

∑
i=1

max{0,1 − yi(wT xi + b)}

∂wℓ(wT xi + b, yi) = I{yi(wT xi + b) ≤ 1}(−yixi)

w(t+1) ← w(t) − η (
n

∑
i=1

I{yi((w(t))T xi + b(t)) ≤ 1}(−yixi) +
2
c

w(t))
b(t+1) ← b(t) − η

n

∑
i=1

I{yi((w(t))T xi + b(t)) ≤ 1)}(−yi)

24

