Classification

Sewoong Oh

CSE446 University of Washington

Boolean Classification

Boolean classification

- Supervised learning is training a predictor from labelled examples:
- There are two types of supervised learning
 - 1. Regression: the output variable y to be predicted is real valued scalar or a vector
 - 2. Classification: the output variable y to be predicted is categorical
 - 2.1 Boolean classification: there are two classes
 - 2.2 Multi-class classification: multiple classes
- We study Boolean classification in this chapter
- We denote two classes by -1 and 1, often corresponding to {FALSE,TRUE}
- for a data point (x_i, y_i) , the value $y_i \in \{-1, 1\}$ is called the **class** or **label**
- A Boolean classifier predicts label y given input x

Training data for a Boolean classification problem

- in this example, each input is $x_i \in \mathbb{R}^2$
- Red points have label y_i =-1, blue points have label y_i =1
- We want a predictor that maps any $x \in \mathbb{R}^2$ to a prediction $\hat{y} \in \{-1, +1\}$

Example: nearest neighbor classifier trained on 100 samples

when overfitting happens, we learned that prediction f(x) is sensitive to changes in x, and this results in complicated decision boundaries

- 1-nearest neighbor classifier:
 - given x, let $\hat{i} \in \{1,...,n\}$ be the closest training sample, i.e. $\hat{i} = \arg\min_{i \in \{1,...,n\}} \|x x_i\|_2^2$
 - prediction is the label of the nearest neighbor: $f(x) = y_{\hat{i}}$
- Red region is the set of x for which prediction is -1
- Blue region is the set of x for which prediction is +1
- zero training error (all training data correctly classified), but likely to be overfitting

Empirical risk minimization (ERM) with quadratic loss

- expanding on what we know from linear regression (in particular linear least squares regression), a straightforward approach for classification is the following
 - use a linear model:

$$\hat{y} = f_w(x) = w_0 + w_1 x[1] + w_2 x[2] + \cdots$$

train on Empirical Risk Minimization with L2 loss

$$\mathcal{L}(w) = \sum_{i=1}^{n} (\underbrace{w^{T} x_{i}}_{\hat{y}_{i}} - y_{i})^{2}$$

- Note that this is exactly linear least squares regression, just applied to a discrete valued y_i 's
- to make a **hard prediction** in $\{-1,1\}$,

$$\hat{v} = \operatorname{sign}(f_w(x))$$

= sign(w₀ + w₁x[1] + ···)

- general recipe:
 - train linear model on ERM
 - make hard prediction by taking the $sign(\cdot)$
- significantly better to choose the right loss tailored for discrete y_i 's

Example: linear classifier trained on 100 samples

simple decision boundary

at
$$w^T x = 0$$

- linear model: $\hat{y} = f(x) = w_0 + w_1 x[1] + w_2 x[2]$
- predict using $\hat{v} = \text{sign}(\hat{v}) = \text{sign}(w^T x)$
- 20% mis-classified in training data
- true positive C_{tp} =42, false positive C_{fp} =12,
- true negative C_{tn} =38, false negative C_{fn} =8

Empirical risk minimization

• given a choice of a loss function $\ell(\hat{y}, y)$, the empirical risk is

$$\mathscr{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{y}_i, y_i)$$

using a linear model:

$$\hat{y} = f_w(x) = w_0 + w_1 x[1] + w_2 x[2] + \cdots$$
 the empirical risk is now

$$\mathscr{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathscr{L}(w^{T} x_{i}, y_{i})$$

• to make a **hard** prediction in $\{-1,1\}$,

$$\hat{v} = \operatorname{sign}(f_w(x))$$

= sign(w₀ + w₁x[1] + ···)

- ERM minimizes this empirical risk
- Regularized ERM minimizes $\mathcal{L}(w) + \lambda r(w)$

Loss function for Boolean classification

- We need to design loss function $\mathcal{C}(\hat{y}, y_i)$
- Note that
 - $\hat{y} = f_w(x) = w^T x \in \mathbb{R}$ can take **any real value**
 - But $y_i's$ only take values in $\{-1, +1\}$
- so in order to specify $\mathcal{E}(\hat{y}, y_i)$ we only need to give two functions (of scalar \hat{y})
 - $\ell(\hat{y}, -1)$ is how much \hat{y} irritates us when y = -1
 - $\ell(\hat{y}, +1)$ is how much \hat{y} irritates us when y = +1
- a natural choice of the empirical risk is the average number of mis-classified samples in the training data
- where $\mathcal{E}(\hat{y}, y_i)$ is the 0-1 loss:

$$\mathcal{E}(\hat{y}, y) = \begin{cases} 0 & \text{if } \operatorname{sign}(\hat{y}) = y \\ +1 & \text{otherwise} \end{cases}$$

$$\mathcal{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(\hat{y}_i, y_i)$$

0-1 loss

0-1 loss is

$$\ell(\hat{y}, -1) = \begin{cases} 0 & \hat{y} < 0 \\ +1 & \hat{y} \ge 0 \end{cases}$$

$$\ell(\hat{y}, +1) = \begin{cases} 0 & \hat{y} > 0 \\ +1 & \hat{y} \le 0 \end{cases}$$

Problem with 0-1 loss

- 0-1 loss is not differentiable, or even continuous (and certainly not convex)
- its gradient is zero or does not exist
- Gradient based optimizer does not know how to improve the model

Ideas of proxy loss

- we get better results using proxy losses that
 - approximate, or captures the flavor of, the 0-1 loss
 - is more easily optimized (e.g. convex and/or nonzero derivatives)
- concretely, we want proxy loss function
 - with $\ell(\hat{y}, -1)$ small when $\hat{y} < 0$ and larger when $\hat{y} > 0$
 - with $\ell(\hat{y}, 1)$ small when $\hat{y} > 0$ and larger when $\hat{y} < 0$
 - Which has other nice characteristics, e.g., differentiable or convex

Sigmoid loss (also known as logistic function)

$$\ell(\hat{y}, -1) = \frac{1}{1 + e^{-\hat{y}}}$$

$$\ell(\hat{y}, +1) = \frac{1}{1 + e^{\hat{y}}}$$

- differentiable approximation of 0-1 loss
- but not convex in \hat{y}
- the two losses sum to one

$$\frac{1}{1+e^{-\hat{y}}} + \frac{1}{1+e^{\hat{y}}} = \frac{e^{\hat{y}}}{e^{\hat{y}}+1} + \frac{1}{1+e^{\hat{y}}} = 1$$

softer (or smoothed) version of the 0-1 loss

Logistic loss

$$\ell(\hat{y}, -1) = \log(1 + e^{\hat{y}})$$

$$\ell(\hat{y}, +1) = \log(1 + e^{-\hat{y}})$$

- differentiable and convex in \hat{y}
- approximation of 0-1
- don't get confused between logistic loss (which is the function above) and logistic function (which is the sigmoid loss)

Hinge loss

$$\ell(\hat{y}, -1) = [1 + \hat{y}]^+$$

$$\ell(\hat{y}, +1) = [1 - \hat{y}]^+$$

non-differentiable but convex approximation of 0-1 loss

Square loss

$$\mathcal{E}(\hat{y}, +1) = (\hat{y} - 1)^{2}$$

3.0
2.5
2.0
1.5
1.0
0.5
0.0
-3
-2
-1
0
1 1 2 3

 not only is it convex, square loss is easy to minimize (has a closed form solution)

Logistic regression:

it is called regression but is just classification with logistic loss

Logistic regression

uses logistic loss

$$\hat{w}_{\text{logistic}} = \arg\min_{w} \mathcal{L}(w) = \frac{1}{n} \left(\sum_{i:y_i = -1} \log(1 + e^{w^T x_i}) + \sum_{i:y_i = +1} \log(1 + e^{-w^T x_i}) \right)$$

with a choice of a regularizer r(w)

- can minimize $\mathcal{L}(w) + \lambda r(w)$
- is a convex optimization if the regularizer is convex, and the minimizer can be found efficiently
- this follows from the fact that $f(z) = \log(1 + e^z)$ is convex in $z \in \mathbb{R}$ (and $f(z) = \log(1 + e^{-z})$ is also a convex function in $z \in \mathbb{R}$)

Example: linear classifier trained on 100 samples

simple decision boundary

at
$$w^T x = 0$$

- linear model: $\hat{y} = f(x) = w_0 + w_1 x[1] + w_2 x[2]$
- predict using $\hat{v} = \text{sign}(\hat{y})$
- 20% mis-classified in training data
- true positive C_{tp} =42, false positive C_{fp} =12,
- true negative C_{tn} =38, false negative C_{fn} =8

Probabilistic interpretation of logistic regression

- just as Maximum Likelihood Estimator (MLE) under linear model and additive Gaussian noise model recovers linear least squares,
- we study a particular noise model that recovers logistic regression
- a probabilistic noise model for Boolean labels:

$$\mathbb{P}(y_i = +1 \mid x_i) = \frac{1}{1 + e^{-w^T x_i}}$$

$$\mathbb{P}(y_i = -1 \mid x_i) = \frac{1}{1 + e^{w^T x_i}}$$

with a ground truth model parameter $w \in \mathbb{R}^d$

- this function $\sigma(z)=\frac{1}{1+e^{-z}}$ is called a **logistic function** (not to be confused with logistic loss, which is different) or a **sigmoid function**
- if we know that the data came from such a model, but do not know the ground truth parameter $w \in \mathbb{R}^d$, we can apply MLE to find the best w
- this MLE recovers the logistic regression algorithm, exactly

Maximum Likelihood Estimator (MLE)

if the data came from a probabilistic model model:

$$\left(\underbrace{\frac{1}{1+e^{-w^Tx}}}, \underbrace{\frac{1}{1+e^{w^Tx}}}\right)$$

$$\mathbb{P}(y_i = +1|x_i) \quad \mathbb{P}(y_i = -1|x_i)$$

• log-likelihood of observing a data point (x_i, y_i) is

$$\log\text{-likelihood} = \log\left(\mathbb{P}(y_i|x_i)\right) = \begin{cases} \log\left(\frac{1}{1+e^{-w^Tx_i}}\right) & \text{if } y_i = +1\\ \log\left(\frac{1}{1+e^{w^Tx_i}}\right) & \text{if } y_i = -1 \end{cases}$$

 Maximum Likelihood Estimator is the one that maximizes the sum of all loglikelihoods on training data points

$$\hat{w}_{\text{MLE}} = \arg\max_{w} \mathbb{P}(\{y_1, ..., y_n\} \mid \{x_1, ..., x_n\})$$

$$= \arg\max_{w} \prod_{i=1}^{\mathcal{W}} \mathbb{P}(y_i \mid x_i) \qquad \text{(independence)}$$

$$= \arg\max_{w} \sum_{i: y_i = -1} \log\left(\frac{1}{1 + e^{w^T x_i}}\right) + \sum_{i: y_i = 1} \log\left(\frac{1}{1 + e^{-w^T x_i}}\right) \qquad \text{(substitution)}$$

notice that this is exactly the logistic regression:

$$\hat{w}_{\text{logistic}} = \arg\min_{w} \frac{1}{n} \left(\sum_{i:y_i = -1} \log(1 + e^{w^T x_i}) + \sum_{i:y_i = 1} \log(1 + e^{-w^T x_i}) \right)$$

• once we have trained a model $\hat{w}_{\text{logistic}}$, we can make a hard prediction \hat{v} of the label at an input example x

$$\hat{v} = \begin{cases} +1 & \text{if } \mathbb{P}(+1|x) \ge \mathbb{P}(-1|x) \\ -1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} +1 & \text{if } \frac{1}{1+e^{-w^T x}} \ge \frac{1}{1+e^{w^T x}} \\ -1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} +1 & \text{if } 1 \le e^{2w^T x} \\ -1 & \text{otherwise} \end{cases}$$

$$= \text{sign}(w^T x)$$

Overfitting in classification

Example: adding more polynomial features

Polynomial features

$$h_0(x) = 1$$
 $h_1(x) = x[1]$
 $h_2(x) = x[2]$
 $h_3(x) = x[1]^2$
 $h_4(x) = x[2]^2$
 \vdots

- data: x in 2-dimensions, y in {+1,-1}
- features: polynomials
- model: linear

•
$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

Learned decision boundary

3-d view

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Learned decision boundary

	1	•
₹ .		view
	TU	V IC VV

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Learned decision boundary

$h_0(x)$	1	0.23	
$h_1(x)$	x[1]	1.12	
$h_2(x)$	x[2]	-1.07	

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
h ₅ (x)	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
h ₄ (x)	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding higher degree polynomial features

Overfitting leads to non-generalization

Feature	Value	Coefficient learned
$h_0(x)$	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	(x[1]) ²	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	(x[1]) ³	-11.0
h ₆ (x)	(x[2]) ³	67.0
$h_7(x)$	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	(x[1]) ⁶	0.8
b /v\	6/(دایر)	0.6

Coefficient values getting large

Adding higher degree polynomial features

Overfitting leads to non-generalization

Feature	Value	Coefficient learned
$h_0(x)$	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	(x[1]) ³	-11.0
h ₆ (x)	(x[2]) ³	67.0
$h_7(x)$	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	(x[1]) ⁶	0.8
h ₁₂ (x)	(x[2]) ⁶	-8.6

Coefficient values getting large

Adding higher degree polynomial features

Overfitting leads to non-generalization

3 2 [2]× 0 -1 -2								
-3	-5 –4	-3	-2	-1 x[1]	0	1	2	3

reature	value	learned
h ₀ (x)	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
$h_3(x)$	$(x[1])^2$	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	$(x[1])^3$	-11.0
h ₆ (x)	(x[2]) ³	67.0
h_(x)	(x[1])4	15

 $(x[2])^4$

 $(x[1])^5$

 $(x[2])^5$

 $(x[1])^6$

 $(x[2])^6$

 $h_8(x)$

 $h_9(x)$

 $h_{10}(x)$

 $h_{11}(x)$

 $h_{12}(x)$

48.0

4.4

-14.2

0.8

Coefficient values getting large

Overfitting leads to very large values of

$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

Even higher degree polynomial features

Feature	Value	Coefficient
$h_0(x)$	1	8.7
$h_1(x)$	x[1]	5.1
$h_2(x)$	x[2]	78.7
• • •	•••	•••
$h_{11}(x)$	$(x[1])^6$	-7.5
$h_{12}(x)$	$(x[2])^6$	3803
$h_{13}(x)$	$(x[1])^7$	21.1
$h_{14}(x)$	$(x[2])^7$	-2406
• • •		•••
$h_{37}(x)$	$(x[1])^{19}$	-2*10-6
$h_{38}(x)$	$(x[2])^{19}$	-0.15
$h_{39}(x)$	$(x[1])^{20}$	-2*10-8
h ₄₀ (x)	$(x[2])^{20}$	0.03

Regularization path

 Absolute regularizer (a.k.a L1 regularizer) gives sparse parameters, which is desired for interpretability, feature selection, and efficiency

Gradient descent

Iterative algorithms for Empirical Risk Minimization

- for some convex loss function $\ell(\hat{y}, y)$, which is convex in \hat{y}
- we want to find \hat{w} that minimizes the objective function
- if there is no analytical solution (which is the case for logistic regression), we resort to **iterative algorithms** that compute sequence of parameters $w^{(0)}, w^{(1)}, \dots, w^{(t)}$ each in \mathbb{R}^d , hoping that it converges to the minimizer of the objective function
- $w^{(t)}$ is called the *t*-th iterate
- $w^{(0)}$ is called the starting point
- an algorithm is a descent method if

$$\mathcal{L}(w^{(t+1)}) \leq \mathcal{L}(w^{(t)})$$

each iterate is better than the previous one

Gradient Descent L(w) - differentiable () Tuh(w) at Eme Ex1-th iterate make an offine Taylor expansion of LCW) around current iterate. L(W; WE) =(L(wa) + 7ho(63) 1 h(wing) > L(w) iH 1/W -W#1/2 & small arginin $\left(\frac{1}{2 \ln 2} \left(\frac{1}{2 \ln 2} \left(\frac{1}{2 \ln 2} \right) \right) + \frac{1}{2 \ln 2} \left(\frac{1}{2 \ln 2} \left(\frac{1}{2 \ln 2} \right) \right) \right) = \frac{1}{2 \ln 2} \left(\frac{1}{2 \ln 2} \left(\frac{1}{2 \ln 2} \right) \right) = \frac{1}{2 \ln 2} \left(\frac{1}{2 \ln 2} \right) \left(\frac{1}{2 \ln 2}$ Scalar learning rate, step size. $W^{(2)} - h^{(2)}, \nabla L(W^{(2)})$

Gradient descent

- suppose $\mathcal{L}(w)$ is differentiable, so gradient exists every $w \in \mathbb{R}^d$
- at (t+1)-th iteration, create **affine Taylor approximation** of $\mathcal{L}(w)$ around current iterate $w^{(t)}$

$$\widehat{\mathcal{L}}(w; w^{(t)}) = \mathcal{L}(w^{(t)}) + \nabla \mathcal{L}(w^{(t)})^T (w - w^{(t)})$$

- this approximation is more accurate, $\widehat{\mathscr{L}}(w; w^{(t)}) \approx \mathscr{L}(w)$, for w near $w^{(t)}$
- hence, we choose $w^{(t+1)}$ that
 - makes $\widehat{\mathscr{L}}(w^{(t+1)}; w^{(t)})$ small
 - while keeping $\|w^{(t+1)} w^{(t)}\|_2^2$

$$w^{(t+1)} \leftarrow \arg\min_{w} \widehat{\mathcal{Z}}(w; w^{(t)}) + \frac{1}{2h^{(t)}} \|w - w^{(t)}\|_{2}^{2}$$

- where $h^{(t)} > 0$ is a trust parameter or step length or learning rate
- the optimal solution of the above update rule is

$$w^{(t+1)} \leftarrow w^{(t)} - h^{(t)} \nabla \mathcal{L}(w^{(t)})$$

se roughly, take a step in the direction of negative gradient

W(Eti) = aff min Theww) (w-wes) + [w-W(es)]2 w (ex) < w (e) - h (e). Thew (e) h (e) _ is related to L(W) Strong Couver won-seronly Convex h (ter) - jh (te)

Gradient descent update

at each iteration, we want update
$$w^{(t+1)}$$
 as the minimizer of $\mathscr{L}(w^{(t)}) + \nabla \mathscr{L}(w^{(t)})^T (w-w^{(t)}) + \frac{1}{2h^{(t)}} \|w-w^{(t)}\|_2^2$

this can be re-written as

$$\mathcal{L}(w^{(t)}) + \frac{1}{2h^{(t)}} \left\| (w - w^{(t)}) + h^{(t)} \nabla \mathcal{L}(w^{(t)}) \right\|_{2}^{2} - \frac{h^{(t)}}{2} \|\nabla \mathcal{L}(w^{(t)})\|_{2}^{2}$$

- as the first and third terms don't depend on w
- middle term is minimized (and made zero) by choosing

$$w^{(t+1)} \leftarrow w^{(t)} - h^{(t)} \nabla \mathcal{L}(w^{(t)})$$

- this is how we update iterates in gradient descent
- in practice, $h^{(t)}$ is fixed as a constant until no progress is being made and then decreased by $h^{(t+1)} = h^{(t)}/2$

Gradient descent convergence

- (under some technical conditions) we have $\|\nabla \mathcal{L}(w^{(t)})\|_2^2 \to 0$ as $t \to \infty$
- i.e., the gradient descent method always finds a global minimum of a differentiable convex function

Gradient descent for ERM

- to implement gradient descent on a given ERM, one needs to compute the gradient (which is typically done automatically via auto differentiation) and choose hyper-parameters
- we can manually compute the gradient as

$$\mathcal{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w^{T} x_{i}, y_{i}) \iff \nabla_{w} \mathcal{L}(w^{T} x_{i} y_{i}) = \mathcal{L}(w^{T} x_{i} y_{i}) \mathcal{L}(w^{T} x_{$$

$$\nabla \mathcal{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell'(w^{T} x_{i}, y_{i}) x_{i}$$

where $\ell'(\hat{y}, y)$ is derivative of $\ell(\hat{y}, y)$ with respect to its first argument \hat{y}

- this can be done via
 - first, compute n-dim vector $\hat{y}^{(t)} = \mathbf{X} w^{(t)}$

2nd operations

- next, compute n-dim vector $z^{(t)}$ with each entry $z_i^{(t)} = \mathcal{E}'(\hat{y}_i^{(t)}, y_i)$ n operations
- finally, compute d-dim vector $\nabla \mathcal{L}(w^{(t)}) = \frac{1}{n} \mathbf{X}^T z^{(t)}$ 2nd operations

Gradient descent for logistic regression

- the logistic loss is (for $\hat{y} = w^T x$) $\mathcal{E}(\hat{y}, y) = \log(1 + e^{-y\hat{y}}) = \log(1 + e^{-y(w^T x)})$
- . the derivative is $\ell'(\hat{y},y) = \frac{\partial \ell(\hat{y},y)}{\partial \hat{y}} = \frac{-y \, e^{-y\hat{y}}}{1 + e^{-y\hat{y}}}$
- the gradient is

$$\nabla \mathcal{L}(w^{(t)}) = \frac{1}{n} \sum_{i=1}^{n} \ell'(w^{T} x_{i}, y_{i}) x_{i} = \frac{1}{n} \sum_{i=1}^{n} \frac{-y_{i} e^{-y_{i} w^{T} x_{i}}}{1 + e^{-y_{i} w^{T} x_{i}}} x_{i}$$

• $4nd + n \approx 4nd$ operations per iteration

Stochastic gradient descent for logistic regression

recall the gradient descent for ERM is

$$\mathcal{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w^{T} x_{i}, y_{i})$$

$$\nabla \mathcal{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell'(w^{T} x_{i}, y_{i}) x_{i}$$

$$w^{(t+1)} \leftarrow w^{(t)} - h^{(t)} \nabla \mathcal{L}(w^{(t)})$$

- as gradient computation can be slow (4nd operations) for large training data with large n,
- stochastic gradient descent (SGD) approximates the gradient by a minibatch of sampled gradients
 - choose the size m of minibatches to be used
 - at each iteration, randomly sample a minibatch of size m $S^{(t)} = \{i_1^{(t)}, ..., i_m^{(t)}\}$
 - compute stochastic gradient update

$$w^{(t+1)} \leftarrow w^{(t)} - h^{(t)} \frac{1}{m} \sum_{i \in S^{(t)}} \ell'(w^T x_i, y_i) x_i$$

Stochastic gradient descent

- each update requires 4md operations
- this is a stochastic (random) approximation of the actual full gradient
- this is an unbiased estimate of the full gradient

$$\mathbb{E}_{S^{(t)}} \left[\frac{1}{m} \sum_{i \in S^{(t)}} \ell'(w^T x_i, y_i) x_i \right] = \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{i \sim \text{Uniform}\{1, \dots, n\}} \left[\ell'(w^T x_i, y_i) x_i \right]$$

$$= \mathbb{E}_{i \sim \text{Uniform}\{1, \dots, n\}} \left[\ell'(w^T x_i, y_i) x_i \right]$$

$$= \frac{1}{n} \sum_{i=1}^n \ell'(w^T x_i, y_i) x_i$$

- choosing a small batch size m is faster, but has large variance
- choosing a large batch size m is slower, but has small variance
- This is another hyper-parameter you tune, in practice

Multi-class classification

How do we encode categorical data y?

- so far, we considered Boolean case where there are two categories
- encoding y is simple: {+1,-1}, as there is not much difference
- multi-class classification predicts categorial y
- taking values in $C = \{c_1, ..., c_k\}$
- c_i 's are called classes or labels
- examples:

Zipcode (10005, 98195,...)

All English words

a k-class classifier predicts y given x

Embedding c_i 's in real values

- for optimization we need to embed raw categorical c_j 's into real valued vectors
- there are many ways to embed categorial data
 - True->1, False->-1
 - Yes->1, Maybe->0, No->-1
 - Yes->(1,0), Maybe->(0,0), No->(0,1)
 - Apple->(1,0,0), Orange->(0,1,0), Banana->(0,0,1)
 - Ordered sequence: (Horse 3, Horse 1, Horse 2) -> (3,1,2)
- we use one-hot embedding (a.k.a. one-hot encoding)
 - each class is a standard basis vector in k-dimension

Multi-class logistic regression

• data: categorical y in $\{c_1, ..., c_k\}$ with k categories

we use one-hot encoding, s.t.
$$y = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 implies that $y = c_1$

• model: linear vector-function makes a linear prediction $\hat{y} \in \mathbb{R}^k$

$$\hat{y}_i = f(x_i) = w^T x_i$$

with model parameter matrix $w \in \mathbb{R}^{d \times k}$ and sample $x_i \in \mathbb{R}^d$

$$f(x_{i}) = \begin{bmatrix} f_{1}(x_{i}) \\ f_{2}(x_{i}) \\ \vdots \\ f_{k}(x_{i}) \end{bmatrix} = \underbrace{\begin{bmatrix} w_{1,0} & w_{1,1} & w_{1,2} & \cdots \\ w_{2,0} & w_{2,1} & w_{2,2} & \cdots \\ \vdots & & & & \\ w_{k,0} & w_{k,1} & w_{k,2} & \cdots \end{bmatrix}}_{w^{T}} \underbrace{\begin{bmatrix} 1 \\ x_{i}[1] \\ \vdots \\ x_{i}[d] \end{bmatrix}}_{x_{i}} = \begin{bmatrix} w_{1,0} + w_{1,1}x_{i}[1] + w_{1,2}x_{i}[2] + \cdots \\ w_{2,0} + w_{2,1}x_{i}[1] + w_{2,2}x_{i}[2] + \cdots \\ \vdots & & & \\ w_{k,0} + w_{k,1}x_{i}[1] + w_{k,2}x_{i}[2] + \cdots \end{bmatrix}}_{w_{k,0} + w_{k,1}}$$

$$w = [w[:,1] \quad w[:,2] \quad \cdots \quad w[:,k]] \in \mathbb{R}^{(A+i)\times k}$$

$$f_{3}(x_{i}) = V_{1,3} \int_{0}^{\infty} X_{i}^{2}$$

Logistic regression

2 classes

$$\mathbb{P}(y_i = -1 \mid x_i) = \frac{1}{1 + e^{w^T x_i}}$$

$$\mathbb{P}(y_i = +1 \mid x_i) = \frac{1}{1 + e^{-w^T x_i}}$$

k classes

$$\mathbb{P}(y_i = -1 \mid x_i) = \frac{1}{1 + e^{w^T x_i}} \qquad \mathbb{P}(y_i = c_1 \mid x_i) = \frac{e^{w[:,1]^T x_i}}{e^{w[:,1]^T x_i} + \dots + e^{w[:,k]^T x_i}}$$

$$\mathbb{P}(y_i = t_1 | x_i) = \frac{1}{1 + e^{w^T x_i}}$$

$$\mathbb{P}(y_i = t_1 | x_i) = \frac{1}{1 + e^{-w^T x_i}}$$

$$\mathbb{P}(y_i = t_1 | x_i) = \frac{e^{w[:,t]^T x_i} + \dots + e^{w[:,k]^T x_i}}{e^{w[:,t]^T x_i}}$$

$$\mathbb{P}(y_i = t_1 | x_i) = \frac{e^{w[:,t]^T x_i}}{e^{w[:,t]^T x_i} + \dots + e^{w[:,k]^T x_i}}$$

Maximum Likelihood Estimator

maximize_w
$$\frac{1}{n} \sum_{i=1}^{n} \log(\mathbb{P}(y_i | x_i))$$

$$\text{maximize}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \log \left(\frac{1}{1 + e^{-y_i w^T x_i}} \right)$$

$$\text{maximize}_{w \in \mathbb{R}^d} \ \frac{1}{n} \sum_{i=1}^n \log \left(\frac{1}{1 + e^{-y_i w^T x_i}} \right) \qquad \text{maximize}_{w \in \mathbb{R}^{d \times k}} \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^k \mathbf{I}\{y_i = c_j\} \log \left(\frac{e^{w[:,j]^T x_i}}{\sum_{j'=1}^k e^{w[:,j']^T x_i}} \right)$$

 $\mathbf{I}\{y_i=j\}$ is an indicator that is one only if $y_i=j$