Classification

Sewoong Oh

CSE446
University of Washington



Boolean Classification



Boolean classification

* Supervised learning is training a predictor from labelled
examples:

* There are two types of supervised learning

* 1. Regression: the output variable y to be predicted is
real valued scalar or a vector

e 2. Classification: the output variable y to be predicted is
categorical

e 2.1 Boolean classification: there are two classes
e 2.2 Multi-class classification: multiple classes

* We study Boolean classification in this chapter

* We denote two classes by -1 and 1, often corresponding to
{FALSE,TRUE}

e for a data point (x;,y;), the value y; € {—1,1} is called the class or label
* A Boolean classifier predicts label y given input x



Training data for a Boolean classification problem
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e in this example, each input is x; € R?
e Red points have label y;=-1, blue points have label y.=1

e We want a predictor that maps any x € R? to a predictiony € {—1, + 1}
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Example: nearest neighbor classifier trained on 100 samples

2-Class classification

* 1-nearest neighbor classifier:

when overfitting happens,
we learned that prediction f(x)

IS sensitive to changes in x,
and this results in complicated
decision boundaries

e given X, IetAf e {1,...,n} be the closest training sample, i.e.
[ = arg min ||x— Xi||%

ie{l,...,n}

o prediction is the label of the nearest neighbor: f(x) = y;

 Red region is the set of x for which prediction is -1

e Blue region is the set of x for which prediction is +1

e zero training error (all training data correctly classified), but likely to be overfitting



Empirical risk minimization (ERM) with quadratic loss

expanding on what we know from linear regression (in particular linear least
squares regression), a straightforward approach for classification is the
following

* use a linear model:
y = f,(xX) =wy+wx[1] +wx[2] + -
* train on EmpiricaInRisk Minimization with L2 loss

Lw) = ) (why —y,)
=1

yi
Note that this is exactly linear least squares regression, just applied to a
discrete valued y;’s

to make a hard predictionin {—1,1},

v = sign( f,,(x))
= sign(wy + wx[1] + --+)

general recipe:
* train linear model on ERM

* make hard prediction by taking the sign( - )

significantly better to choose the right loss tailored for discrete y.’s



Example: linear classifier trained on 100 samples

__simple decision boundary
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linear model: y = f(x) = wy + wx[1] + w,x[2]

predict using ¥ = sign(y) = sign(w’x)
20% mis-classified in training data
true positive (), =42,
true negative (7, =38,

false positiveC'¢,, =12,
false negative ( n =8



Empirical risk minimization
e given a choice of a loss function £(y, y), the empirical risk is

1 n
Fw) = — D A5
=1

* using a linear model:
y = f.,(0) =wy+wx[1] +wx[2] + -
the empirical risk is now

e to make a hard prediction in {—1,1},

v = sign( f,,(x))
= sign(wy + wx[1] + --+)

* ERM minimizes this empirical risk
e Regularized ERM minimizes £ (w) + A r(w)



Loss function for Boolean classification

» We need to design loss function £ (3, y,)
 Note that

« Y=L =w
e But y;s only take valuesin {—1, + 1}

'y € R can take any real value

e so in order to specify (¥, y;)
we only need to give two functions (of scalar y )

e Z(y,—1)is how much y irritates us wheny = — 1

e £(y,4+ 1)is how much y irritates us when y = + 1

e a natural choice of the empirical risk is
the average number of mis-classified samples in the training data

e where £(},y,) is the 0-1 loss:

£G5.y) = { 0 ifsign(y) =y

+1  otherwise

] - A
L(w) =— 2} £ 3i)



0-1 loss

e 0O-1lossis
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f(y,—l)—{ﬂ >0 D= <o
loss £(1,y) loss £3,9)
R S llf)l”edi(23t10n ?3) coor 1pfediétion 7
true y true vy

10



11

Problem with 0-1 loss

* 0-1 loss is not differentiable, or even continuous (and
certainly not convex)

* |ts gradient is zero or does not exist

 Gradient based optimizer does not know how to improve
the model
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ldeas of proxy loss

* we get better results using proxy losses that
e approximate, or captures the flavor of, the 0-1 loss

* s more easily optimized (e.g. convex and/or non-
zero derivatives)

e concretely, we want proxy loss function

* with ¢(y, —1) small when ¢ < 0 and larger when g > 0

* with ¢(¢, 1) small when § > 0 and larger when y < 0

e Which has other nice characteristics, e.g.,
differentiable or convex
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Sigmoid loss (also known as logistic function)
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Logistic loss
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e differentiable and convexiny
e approximation of 0-1
e don’t get confused between logistic loss (which is the function

above) and logistic function (which is the sigmoid loss)




Hinge loss

(g, —1) =[1+g]" (g, +1) =[1—g]"
true y true y
where [2]T = max{0, x}

e non-differentiable but convex approximation of 0-1 loss
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Square loss

£3,—1) = §+1)
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e not only is it convex, square loss Is easy to minimize

(has a closed form solution)
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Logistic regression:
it is called regression but is just classification with
logistic loss



Logistic regression

e uses logistic loss
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Wlogistic
with a choice of a regularizer r(w)

e can minimize Z(w) + Ar(w)

e |s a convex optimization if the regularizer is convex, and the minimizer
can be found efficiently

e this follows from the fact that f(z) = log(1 + ¢*) isconvexinz € R
(and f(z) = log(1 + e™) is also a convex function in z € R)
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Example: linear classifier trained on 100 samples

__simple decision boundary

+1

atwlix =0

linear model: y = f(x) = wy + wx[1] + w,x[2]

predict using ¥ = sign(y)
20% mis-classified in training data
true positive (), =42,
true negative (7, =38,

false positiveC'¢,, =12,
false negative ( n =8
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Probabilistic interpretation of logistic regression

just as Maximum Likelihood Estimator (MLE) under linear model and
additive Gaussian noise model recovers linear least squares,

we study a particular noise model that recovers logistic regression

a probabilistic noise model for Boolean I?bels: :
PO = e
P( 1]x;) 1 :
y, = — X — .
’ ’ L+evs o
with a ground truth model parameter w € R¢ wlx,
this function o(z) = - is called a logistic function (not to be
o—

confused with logistic loss, which is different) or a sigmoid function

If we know that the data came from such a model, but do not know the
ground truth parameter w € IRd, we can apply MLE to find the best w

this MLE recovers the logistic regression algorithm, exactly
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Maximum Likelihood Estimator (MLE)

e |f the data came from a probabilistic model model:

1+ e—wT:c’ 1+ e’wTCIZ
A\ -~ _J/ A\

 log-likelihood of observing a data point (x;, y;) is

log-likelihood = log (P(yz|$z))
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e Maximum Likelihood Estimator is the one that maximizes the sum of all log-
likelihoods on training data points

WMLE

= argmax Py, ..., y,} [ {xp....x,})

W
arg max H P(y;|x;)
Y=

1

arg max Z log( T

T

1

)+.Z 10g<1+
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(independence)

(substitution)



notice that this is exactly the logistic regression:

1
Wiogisie = argmin ;( Z log(1 + ") + 2 log(1 + e_WTxi)>
" 1y=—1 1y;=1

once we have trained a model v?zlogistic, we can make a hard
prediction v of the label at an input example x
[ +1 if P(+1|x) > P(—1|x)

—1  otherwise
(L e >
= ‘ 1 e—"f“ x l4ew™ T
—1 otherwise

. T

+1 ifl1<ew ®
—1  otherwise

b= <

/\\

\

— sign(w’ z)
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Overfitting in classification
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Example
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data: x in 2-dimensions, y in {+1,-1}

features: polynomials
model: linear

3

: adding more polynomial features

Polynomial
features
ho(xz) =1
hi(x) = x|1
ho(x) = x|2
hs(x) = x[1]
ha(z) = 2

f(x) — ”LU()h()(x) + wlhl(x) - thQ(x) + ..




Learned decision boundary
4

T[] T3 2 -l 0 1 2 3

X1}
3-d view
ho(x) 0.23
hi(x) x[l] 1.12
ha(x) x[2] -1.07

* Simple regression models had smooth
.- ® Simple classifier models have smooth


https://www.google.com/search?ei=Wxu9XPS3BYmt0gLrkoyYDQ&q=0.23+1.12x+-1.07y&oq=0.23+1.12x+-1.07y&gs_l=psy-ab.3...11199.11199..11397...0.0..0.33.33.1......0....1..gws-wiz.......0i71.J2TOrs9fhMw

Learned decision boundary
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* Simple regression models had smooth
. ® Simple classifier models have smooth
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Learned decision boundary
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* Simple regression models had smooth
,» ® Simple classifier models have smooth
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Adding quadratic features
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X[1]

ho(x) 1 1.68
hi(x) x[1] 1.39
ha(x) x[2] -0.59
h3(x) (x[1])2 -0.17
h4(X) (x[2])? -0.96

hs(x) x[1]x][2] Omuitted

 Adding more features gives more complex models

. * Decision boundary becomes more complex



Adding quadratic features
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Adding quadratic features
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hs(x) x[1]x][2] Omuitted

 Adding more features gives more complex models

., * Decision boundary becomes more complex



Adding higher deg

Coefficient
Value
learned

ho(x)
hy(x)
h(x)
hs(x)
hy(x)
hs(x)
he(x)
hs(x)
hg(x)
ho(x)
h1o(x)
h11(x)
h1a(x)

1
x[1]
x[2]

(x[1])2

(x[2])?

(x[1])3

(x[2])?

(x[1])*

(x[2])*

(x[1])>

(x[2])°

(x[1])®

(x[2])®

21.6
5.3

48.0
4.4
-14.2
0.8
-8.6

“

Coefficient values
getting large

»

ree polynomial features
Overfitting leads to
non-generalization




Adding higher degree polynomial features
Overfitting leads to

T non-generalization

Coefficient
Value
learned

ho(x) 1 21.6 o
hy(x) X[1] c 3 Coefficient values

getting large

h(x) x[2]

hs(x) (x[1])2
hy(x) (x[2])?
hs(x) (x[1])3
hs(x) (x[2])?
h7(x) (x[1])*

hs(x) (x[2])* 48.0
ho(x) (x[2])° 4.4
h1o(x) (x[2])° -14.2
h11(x) (x[1])® 0.8

h12(x) (x[2])® -8.6



Adding higher degree polynomial features
Overfitting leads to

non-generalization

Coefficient
Value
learned

ho(x)
hy(x)
h(x)
hs(x)
hy(x)
hs(x)
he(x)
hs(x)
hg(x)
ho(x)
h1o(x)
h11(x)
h1a(x)

1
x[1]
x[2]

(x[1])2

(x[2])?

(x[1])3

(x[2])?

(x[1])*

(x[2])*

(x[1])>

(x[2])°

(x[1])®

(x[2])®

21.6
53 Coefficient values

getting large

48.0

e Qverfitting leads to very large values of

-14.2

»  f(z) = woho(x) +wihi(x) + waha(x) + - -



Even higher degree polynomial features

Coefficient

ho(X) 1 8.7

hi(x) x[1] 5.1 4

ha(x) x[2] 787 3

hi1(x) (x[1])¢ -7.5 —_ 1

hio(x)  (x[2])6 3803 % o

hi13(x) (x[1])7 21.1 -1

h14(x) (x[2])7 -2406 >

ha7(x)  (x[1D*°  -2%10 254 =3 -2 -1 0 1 2 3
h3s(x) (x[2])1® -0.15 x[1]
hso(x)  (x[1])%0 -2*10-8

hao(x) (x[2])%° 0.03
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Regularization path

absolute regularizer: ||w||; = |wi| + -+ - + |wy
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* Absolute regularizer (a.k.a L1 regularizer) gives sparse
parameters, which is desired for interpretability, feature
selection, and efficiency



36

Gradient descent



37

Iterative algorithms for Empirical Risk Minimization

n
o . . T
minimize,, Z W' x;,y;)

° =1

SfEW)

e for some convex loss function £(3, y), which is convex in y

e we want to find w that minimizes the objective function

e if there is no analytical solution (which is the case for logistic
regression), we resort to iterative algorithms that compute

sequence of parameters W(O), w(l), oo, w® each in IRd, hoping
that it converges to the minimizer of the objective function

e w is called the 7-th iterate

e wis called the starting point
e an algorithm is a descent method if

Zw'*)y < Lw")

each iterate is better than the previous one
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Gradient descent

suppose £ (w) is differentiable, so gradient exists every w € R4

at (t+1)-th iteration, create affine Taylor approximation of £ (w) around
current iterate w®

Lw;wD) = LW + VLW (w — w)
. thls approximation is more accurate,
g(w wD) ~ L(w), for w near w
 hence, we choose w'tD that
e makes :@(W(Hl); w?) small

+ while keeping [[w®*! — w2

(t+1) s D (e (D)
w «— aremin &L (w;w') +
g mi ( ) YA

e where h” > Qs a trust parameter or step length or learning rate
* the optimal solution of the above update rule is

Iw — w13

w3, _ (@) VSZ(W(I))
s9¢ roughly, take a step in the direction of negative gradient



2,
CE—H (e Ce
I ’ﬁ' win - Vi ) (W =W le(? [|W-W™ L
og it L e 2
ﬁ‘w I || (W 7) + W) v /V(,,Jf’c)g\l + Coustant,
O ~— 2
= O
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Gradient descent update

(+1) 25 the minimizer of

lw — w13

e at each iteration, we want update w
g(w(l‘)) V g(w(t))T(W _ W(t)) _

Y0

e this can be re-written as

h®
2

1 p)
LW 4 (W —wD) + hOV 2(w®) H IV ZwD)|2
2

2h®
e as the first and third terms don’t depend on w
e middle term is minimized (and made zero) by choosing

WD 0 g0y (10

e this is how we update iterates in gradient descent

e |n practice, h" is fixed as a constant until no progress Is being
made and then decreased by A0 = B0/2



Gradient descent convergence

* (under some technical conditions) we have
IVZWD)||5 = 0ast — oo

* |.e., the gradient descent method always finds a global
minimum of a differentiable convex function

42
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Gradient descent for ERM

to implement gradient descent on a given ERM, one needs to compute
the gradient (which is typically done automatically via auto
differentiation) and choose hyper-parameters

we can manually Compute the gradient as

L(w) = Zf(w X,y) € > v, QU"TX j’) QCW’@)K

VZ(w) = Z ' (wt X, Vi)X;

where £'(),y) is derlvatlve of £(y, y) with respect to its first argument y

this can be done via
e first, compute n-dim vector )A}(t) = Xw® 2nd operations
o next, compute n-dim vector z” with each entry z(t) =7 ’(A(t), y;) n operations

. : (1) I T, (1)
. finally, compute d-dim vector VZ(w'") = —X'z

" 2nd operations
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Gradient descent for logistic regression

» the logistic loss is (for y = w x) )
£(P,y) = log(l +e™) =log(l + ™)

or (v, —ye Y
. the derivative is C'(y,y) = (yA )) — -
oy 1l + e
* the gradient is
1 n 1 n _y e—inT.Xi
VWD = =Y Zwlx, y)x. = — l X;
W™ nlzz1 ( Vi) ni=211+e‘inTxil

e dnd + n =~ 4nd operations per iteration



45

Stochastic gradient descent for logistic regression

* recall the gradient descent for ERM is

Lw) = 2 A X, V;)

WD 0 _ p0 v (0

e as gradient computation can be slow (4nd operations) for large training data with
large n,

* stochastic gradient descent (SGD) approximates the gradient by a minibatch of
sampled gradients

e choose the size m of minibatches to be used

e at each iteration, randomly sample a minibatch of size m
SO = (i, ..., i)

* compute stochastic gradlent update
wlth oyt h(t) Z £'wlx, y)x,

lES (?)



Stochastic gradient descent

e each update requires 4md operations
e this is a stochastic (random) approximation of the actual full gradient

* this is an unbiased estimate of the full gradient

[ES(f)[_ Z f’(W yi)xi] _Z [EzNUnlform{l n}[f (W Ais yz)x]

zES 0 i=1

[EzNUmform{l n}[f ,(W s Y i)xi]
— 2 £'(w!x, y)x,

e choosing a small batch size m is faster, but has large variance

e choosing a large batch size m is slower, but has small variance

e This is another hyper-parameter you tune, in practice

46
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Multi-class classification



How do we encode categorical data y?

e so far, we considered Boolean case where there are two categories
e encoding y is simple: {+1,-1}, as there is not much difference

e multi-class classification predicts categorial y
e taking valuesin C = {c{, ..., }

° cj’s are called classes or labels

e examples: | |
f@% 199&5 All English words
Country of birth Zipcode
(Argentina, Brazil, USA,...) (10005, 98195,...)

* ak-class classifier predicts y given x

48



Embedding ¢/’s in real values

o for optimization we need to embed raw categorical cj’s
into real valued vectors

* there are many ways to embed categorial data
e Jrue->1, False->-1
e Yes->1, Maybe->0, No->-1
* Yes->(1,0), Maybe->(0,0), No->(0,1)
 Apple->(1,0,0), Orange->(0,1,0), Banana->(0,0,1)

 Ordered sequence:
(Horse 3, Horse 1, Horse 2) -> (3,1,2)

 we use one-hot embedding (a.k.a. one-hot encoding)
e each class is a standard basis vector in k—dimension

1-hot

encoding m_
Country of birth 1 1

L (Argentina, Brazil, USA,...) | | J

Y Y
49 196 categories 196 features
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Multi-class logistic regression

e data: categorical y in {c, ..

we use one-hot encoding, s.t. y =

-

SO O =

., C;} with k categories

implies that y = ¢,

» model: linear vector-function makes a linear prediction € R*

)A’i — f(xi) = wai

with model parameter matrix w €

_fl (x,-)_
()

i),

Wio Wig Wi -

Wro Wo1 Woo -

Wio Wkai Wiko

w=|wl:,1] wl:,2]

WT

- w[:,k]] E

Rdxk

1
xi[l]

_xi [.d ] .

(At 5& K

K

)

and sample x; € R¢

wio+ wi ] +wox[2]+ -

Wy o+ Wo 1 5 [1] + wy o x[2] + -+

_Wk,o + Wk,lxi[l] + Wk’zxi[z] + .-

AT
fo) = WL




e Logistic regression

2 classes k classes
ew[:,l]Txl-
ﬂj) . = — 1 X:) = - L) —
(yl | l) 1 + ewai I]:D(yl Cl |'xl) eW[i,l]TX,- + . + eW[i,k]Txi
PQ;=+1[x) = -
l l 1 + e ew[:,k]Txl-
P(y, = Cklxi) =
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Maximum Likelihood Estimator
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£ I{y;, = J} is an indicator that is one only if y, = j



