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L1 Regularizer

* sum absolute or L1 regularizer uses

r(w) = |wi| + |lwa] - + |wd]

* this is the same as L1 norm of the weight vector

(we write is as wy., to emphasize that w,, is the weight of the constant term
that should not be regularized)

|w1.4)1 = w1 | + |wa| + - - + |wy]

n
we use empirical risk £ (w) = Z (WTxi — yi)z
i=1

* with L1 regularizer, it is called Lasso regression
minimize £ (w) + 1 ||w||,

* since it is a convex function, can be efficiently minimized using optimization
(but unlike ridge regression, does not have a closed-form solution)

* it has interesting properties, making it attractive in practice (sparsification)



Sparse coefficient vector

SUppoOse W Is sparse, i.e. many of its entries are zero

prediction § = w! x does not depend on features of x = (x[1], ..., x[d]) for which

this means we select some features to use (i.e. those with w; =+ ()

(potential) practical benefits of sparse w
* true model might be sparse in real applications
* e.g. polynomial fit

e gparsity (i.e. the number of features used in prediction) is the simplest measure of
complexity of a model

e sparse models are natural choice of simple models
* makes prediction model simpler to interpret
* e.g. medical diagnosis
* makes prediction faster (less computation)
* Dbut, manually engineering correct sparse set of features is extremely challenging



Selecting sparse features based on Ridge regression (L2 regularizer)
can be problematic

e sometimes sparse features are desired in practice

* consider running the following sparse feature selection
method

e run Ridge regression, with optimal lambda

e Set to zero (shrink) those parameters that are smaller than
a threshold
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e Set threshold in order to keep the top 5, for example, parameters
e What is wrong with this approach?



Selecting sparse features based on Ridge regression (L2 regularizer)
can be problematic

e sometimes sparse features are desired in practice

e consider running the following sparse feature selection
method

* run Ridge regression, with optimal lambda
e shrink parameters that are smaller than a threshold
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Selecting sparse features based on Ridge regression (L2 regularizer)
can be problematic

* |f only one of the features were included when running
Ridge regression, it would have survived
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e thresholding Ridge regression parameters unnecessarily
penalizes multiple similar features

 |Lasso is a more principled way of selecting sparse features



Example: house price with 16 features

test error i1s red and train error is blue
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Lasso regression naturally gives sparse features

* feature selection with Lasso regression
1. choose which features to keep based on cross validation error

2. keep only those features with non-zero parameters in w at optimal 4
3. retrain with the sparse modeland A = 0

Example: Lasso training with 200 features

8 g

6 1

.  Lasso has only 35 non-zero components
2 25 -

0 - ' ' : : . . 20 -
: s 5 &0 80 100

: 15

) | Wi |

0 —— ——. ]
SRS . Sorted list of trained weights
-2 /
. | ' ' ' ] : 00 - ]“h.‘lhh

0 25 5 75 100 125 150 175 200



Example: piecewise-linear fit

* We use Lasso on the piece-wise linear example
hQ(CIZ) = 1
hi(z) = [z +1.1—0.14]"

minimize,, L(w) + i||w||, minimize,, Z(w)
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Why does Lasso give sparse solutions?

. minimize,, Z:(wa,-—y,-)2 + Allwll
i=1

e comparing L1 with L2:

o for L2 regularizer, once w; is small, (wj)2 is very small

* so not much incentive to make coefficients go all the way to zero

o for L1 regularizer, incentive to make w; smaller
keeps up all the way until it is zero

Q. among all 2-dimensional vectors with
||w||% = W12 + w22 =1
Which one has the smallest L1-norm,
wlly = 1w [+ 1wy, ?
A a
1
[w; | (w))?

10 Wj set of points with ||w||% =1 set of points with ||w||, = a
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Why does Lasso give sparse solutions?

consider the optimal solution of a problem:
n
A : T 2
Wy = argmin ) wx;—y)? + Allwll,
w
i=1

for each given A, there exists a i such that the following problem has the
exactly same solution

>
|l

n
: T 2
p arg min Z w'x;, —y,)
Y=l

subject to ||w|l; < u

that is for any A there exists a y such that
V,i//l — W,M
just as w , becomes sparse with increasing 4,

vA\/ﬂ becomes sparse with decreasing

hence, we study sparsity of the optimal solution of the second problem



Why does Lasso give sparse solutions?

minimize,, 2 wlx, —y)* + Alwll,

=1

fZEw)

Optimal solution w _ .

when 4 = 0 (equivalent to i = o)

w
A2

» Wy

feasible set is
12 the entire space

n
o« e . T 2
minimize,, Z wWx; —y;)
i=1

subject to ||w||; < u

the level set of a function £ (w;, w,) is

defined as the set of points (w;, w,) that have
the same function value

the level set of a quadratictunctioch-is-an oval
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minimize, Z(W Tx. —yv)* + 2wl
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Why does Lasso give sparse solutions?

=1

- v

=1

minimize,, Z (w! X; — yl)2

L(w) subject to ||w||; < u

as we decrease u from infinity (which is the

same as increasing regularization parameter A),

the feasible set becomes smaller

the shape of the feasible set is what is known

as L, ball, which is a high dimensional diamond 2

In 2-dimensions, it is a diamond
{(Wlawz)‘ [wi | + [wy| < pj

when p is large enough such that

# > ||W,_ll1, then the optimal solution does

not change as the feasible set includes the un-
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regularized optimal solution




Why does Lasso give sparse solutions?

n n
minimize,, 2 (wai — yl-)2 + Allw]|; minimize,, 2 (WTX,- — yi)z
i=1 i=1

L(w) subject to ||w||; < u

e as we decrease u from infinity, (which is the

same as increasing regularization parameter A),
the feasible set becomes smaller

e initially, both w; and w, become smaller, but not
zero e

S0

p=00

feasible set: {w € R?| ||w||; < u} >

» Wy
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minimize, , Z(W "x;—y)* + Alwll,
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Why does Lasso give sparse solutions?

i=1

- -

=1

minimize,, 2 wlx, —y,)?

L(w) subject to ||w||; < u

as we decrease u from infinity, (which is the

same as increasing regularization parameter A),
the feasible set becomes smaller

initially, both w{ and w, become smaller, but not
zero e

eventually, wj’s become zero one by one

this explains the regularization path of Lasso
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In the case of Ridge regression

minimize,, 2 (w! X; — yl-)2 /1||w||2 minimize,, Z (w' X; _yl)z
=1 =1

- -

L(w) subject to ||w||% < u

o for ridge regression, the feasible set is an L,-norm ball, which is actually a ball
{(wy, wy) | W12 + sz < uj

* hence, the solution is net sparse

e because LL1=ball is pointy, we get sparse solutions
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Optimization: how do we solve Lasso?

e among many methods to find the solution, we will learn
coordinate descent method

e as an illustrating example, we show coordinate descent
updates on finding the minimum of f(x, y) = 5x% — 6xy + 5y

15 | [z, y) = 51‘2‘ — 6zy + 5y2

—1. . | | ! I
17 —51.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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Optimization: how do we solve Lasso?

. e 9)
. minimize,, || Xw —y||5+ A||w]|;

 we will study one method (coordinate descent) to solve the problem and find the minimizer wy,
* Coordinate descent

e input: training data S, ,, max # of iterations T

rain?
e initialize: W) = 0 € R?
e for t =1,...,T

e for j=1,...,d

(7) (1) (1—1) (1—1)
o flxw1 ,...,w] 1andw { ,_...,wd_ , and ) )
(7) (7)
Wi Wi
(7) (7)
Wi Wi
wj(t) «— argmin & W + A W
WER =D L =D)
]+1 ]+1
(t—1) (1—1)
Wa Wa 7 1

19 this is a one-dimensional optimization, which is much easier to solve



20

Coordinate descent for (un-regularized) linear least squares

e |et us understand what coordinate descent does on a simpler problem
of linear least squares, which minimizes

minimize, Z(w) = || Xw —y||5

e note that we know that the optimal solution is
A T~ -1y T
s = XIX)" !XTy
so we do not need to run any optimization algorithm

e we are solving this problem with coordinate descent for illustration
purpose

o the main challenge we want to address is, how do we update M{].(”‘)?

o let us derive an analytical rule for updating wj(t)
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Coordinate descent for (un-regularized) linear least squares

e we will study the case j = 1, for now (other cases are almost identical)

« when updating wl(t), recall that
wl(t) — argmin || Xw —y||5
Wi
_ (—1) (=1 T
where w = [wy, w, ) e WS ]

* first step is to write the objective function in terms of the variable we are
optimizing over, that is wy:

Lw) = || X[: 1w, +X[: 2 dlw_; —y | 2

where w_; = [wz(t_l) ) e ,Wc(lt_l)]T

4T wy T —

X[ 1| X[:,2:d] X[: 1] X[:,2:d]

* we know from linear least squares that the minimizer is

w® — X[ TX DT XL (y = X[ 20 dIwy )
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 Coordinate descent applied to a quadratic loss
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Coordinate descent for Lasso

* |et us apply coordinate descent on Lasso, which minimizes
minimize, Z(w) + Allwll; = [Xw = y[I5 + A [Iwll,

o the goal is to derive an analytical rule for updating wj(t)’s

o let us first write the update rule explicitly for wl(t)

o first step is to write the loss in terms of w,

2

[XC 1wy = (v = X0 2 dhwey) ||+ 2(w oyl )

éonétan;c
* hence, the coordinate descent update boils down to

2
W argmin [X[: 1w, — (y - X[: 2 dlw_,) H2 + 2w
w1

fowy)



Convexity

e to find the minimizer of f(w,), let’s study some properties
e for simplicity, we represent the objective function as
flwy) = (aw; = b)* + 4| w|
* this function is
e convex, and
* non-differentiable

 depending on the values of a and b, the function looks
like one of the three below

ZIST 5 7.5 10

25 minimum minimum minimum




Convexity

* A function f(x) is convex if and only if

e flax+ (1 —-a)y) < afix)+ 1 —-a)f(y)

foralla € [0,1] and all x, y

/ L+
200] 2fx ny

20



Convexity

o function f(x) is differentiable if and only if

of (x)

an

partial derivative

exists forallxandj € {1,...,d}

« for a differentiable function f(x), there is another definition of convexity

+ f) 2 fx) + V'Y —x)

for all x,y

80+

J)
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f) + Vfi(y —x)



Convexity () = x|

104

* for a non-differentiable function, gradient is not defined at some points,
for example at x = O for f(x) = | x|

* at such points, sub-gradient plays the role of gradient
* sub-gradient at a differentiable point is the same as the gradient
* sub-gradient at a non-differentiable point is a set of vector satisfying

ofx) = {g€RIf(y) =fx)+ g (y—x), foraly € R?}

+1 forx >0
o forexample, d|x| = ¢ [—1,1] forx=0
—1 forx <O
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Convexity

e for convex differentiable functions, the minimum is achieved at
points where gradient is zero

80+

e for convex non-differentiable functions, the minimum is achieved
at points where sub-gradient includes zero

104
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Coordinate descent update on Lasso

2
wl(t) — argminHX[: JAlw, — (y—X[: 2 d]w_l)H2+/1|w1|
Wi

Sfwy)
e thisis f(w;) = (aw; — b)*+ A|w, | + constants, with

. a= \/X[: 17X[: .17, and

. _ X A1 (y = X[: .2 - dlw_))

: VX[ 1TX: 1

e f(w,) is non-differentiable, and its sub-gradient is

of(wy) = alaw, — b) + A 9| w|

2a(awy —b) + A for wy >0
=< |—2ab—\,—2ab+ )] forw; =0
2a(aw; —b) — A for wy <0

32
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How do we find the minimizer?

o the minimizer w'” is when zero is included in the sub-gradient

1

2a(awy — b) + A
Of(wy) = — 2ab — A\, —2ab + A
2a(aw; — b) — A

* case 1:

e 2a(aw; — b) + A =0 forsomew; >0

* this happens when
— A+ 2ab
Wl — > O
2a?

e hence,

b A

()
wW e — — ——
1 a 2a?

for w; > 0
for wy =0
for wy < 0

100 +
50 --\—/
. 7:5 'IAO

if A < 2ab

Z;ST §

minimum
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case 2:

e 2a(aw; —b) — A =0forsomew; <0
e this happens when

Wi
e hence

(7)
Wi
if A <

case 3:

e 0 € [-2ab— A, —2ab

- A+ 2ab
2a2

A

&
N

a 2a?

— 2ab

e andw; =0

e hence,
wl(t) < 0,

if —A

<2ab< A

<0

Al

-10 7.5 -5 45

200+

150 +

100+

minimum

1204
1004
801
60+
404

20+

2.5 5 7.5 10

minimum



Coordinate descent on Lasso

e considering all three cases, we get the following update rule by
setting the sub-gradient to zero

b A for 2ab > A\

a 202

w 0 for — A< 2ab< )\
b A for A < —2ab

X[: ,1]T(y — X[:,2: d]w_l)
Vv X[ TX: 1

where a = \/X[: A17X[: ,1],and b =

120 +
200+ 1001

80+

404

20+

ﬁ\/

37

A 2.5 5 7.5 10 -8 -6 -4 -2 2 4 6 8 -1 7. - -2. ZIET 5 7.5 10

minimum minimum minimum



38

When does coordinate descent work?

e Consider minimizing a differentiable convex function f(x),
then coordinate descent converges to the global minima

< -

e when coordinate descent has stopped, that means

of (x
S =0forallj e {l,...,d}
a.x]'
e this implies that the gradientV, f(x) = 0, which happens only

at minimum
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When does coordinate descent work?

e Consider minimizing a non-differentiable convex function f(x),
then coordinate descent can get stuck

W




When does coordinate descent work?

e then how can coordinate descent find optimal solution for Lasso?

e consider minimizing a non-c!lifferentiable convex function but has a

structure of f(x) = g(x) + Z hj(xj) , with differentiable convex
j=1

X2
0
|

function g(x) and coordinate-wise non-differentiable convex functions
hj(xj)’s, then coordinate descent converges to the global minima
¥ 7 7// y
-4 -2 0 2 4
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