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Sensitivity: how to detect overfitting in order to prevent it

consider a linear predictor

f(z) = wo+wiz|l] + wezx|2] + - - - + wyx|d|

if |wilis large then the predictor is very sensitive to
small changes in Z; lead to large changes in the prediction

large sensitivity can lead to overfitting and poor generalization
or models that overfit tend to have large sensitivity

for [0] = 1 there is no sensitivity, as it is a constant

This suggests that we would like w or (wi.q if 2|0] = 1)
not to be large



Regularizer

e we measure the size of w using a regularizer function 7 : R — R

 r(w) is the measure of the size of w (or wi.q)

e quadratic regularizer (a.k.a L2 or sum-of-squares)
r(w) = [w]® = wi +w; + - +w;

* absolute value regularizer (a.k.a. L1)

r(w) = lwlli = |wi] + [wa] 4 + Jwd]

* What is wrong with

r(w) = w +wz + -+ 4+ wy



Adding a regularizer to the loss

1
. We want small empirical risk (without normalization by —)
n
n

Z (WTxi — yi)2

i=1

 we want small sensitivity
r(w)
e these two objectives are ’jlcraded off via regularized loss

Z (wai — yl-)2 + Ar(w)
i=1

e A > 0 is the regularization parameter
(or hyper parameter) and is one of the most relevant hyper parameter to
tune in training

 solve the optimization problem for a choice of r(w)
to choose w that minimizes the regularized loss



n
minimize,, Z whx, —y)* + Ar(w)
i=1
when A = 0 this reduces to the standard quadratic loss

this defines a family of predictors,
each (hyper)-parametrized by A

in practice, we try out tens of values of A in a wide range
we use validation to choose the right A

we choose the largest 4 that gives near minimum test
error, that is least sensitive predictor that generalizes well
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to be precise, this process is flawed
and we should use a more principled
way using cross-validation

(which is at the end of this chapter)
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Ridge regression

* ridge regression: quadratic loss and quadratic regularizer

also called Tykhonov regularized least squares

n d
L(w) + Ar(w) = Z wlhx, —y)* + A 2 Wj2
i=1 j=1

-~

~~ 2 ~ ~
| Xw—yl[5 lwl|3

Va\

Wiidge = argmin Zw) + Ar(w)

* the optimal solution is also anallytical (or closed-form)
A _ T I T
Wridge _ ( X' X+ ﬂIdXd) X y
where 14,4 is the d-dimensional identity matrix



e this follows from the fact that
Lw)+ irw) = || Xw —yll5 + A||wl|5

) o
— W —
’11/2 Id><d Od

2
where 14, 4 is the d X d-dimensional identity matrix, and
0, is the d-dimensional zero vector

e the gradient with respect to w is

X y
T 1172 _
p) [X A Idxd] ( [ /11/2Id><d] W [Od] )

y

) <XTX + /udxd> w—2X"y

e Setting this gradient to zero, we get
Wridge — (XTX + ﬂIdxd)_IXTy



Example: housing price (data from kaggle)
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e sale prices of 1459 homes in Ames, lowa from 2006 to 2010
e out of 80 features, we use 16

 we manually remove 4 outliers with are>4000 sq.ft.
we will learn outlier detection later



Input features

* house price input data:
area of living space
garage (no:0, yes:1)
year built
area of lot
year of last remodel
area of basement
area of first floor
area of second floor
number of bedrooms (above ground)
number of kitchens (above ground)
number of fireplaces
area of garage
area of wooden deck
number of half bathrooms
overall condition (1-10)
overall quality of materials and finish (1-10)
number of rooms (above ground)
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Example: regression (with no regularization)

prediction g

e gplit data randomly into 1164 training and 291 test
e target is log(price)

* standardize all features (and log(price)): shift and scale each feature (and
the outcome log(price) ) such that they are zero mean and variance one

e training error = 0.1093
e testerror=0.1175
* plot shows all 291 test points
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Example: Ridge regression minimize Y’ w'x; - y)? + llwll3
i=1
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e |eftmost training error is with no regularization: 0.1093
* rightmost training error is variance of the training data: 0.9991
* the right plot is called regularization path



Example: Ridge regression
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e optimal regularizer lambda= 0.1412

* slightly improves the test performance
e from test MSE = 0.1175 to test MSE = 0.1147
* this gain comes from shrinking w’s to get a less sensitive predictor
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Example: piecewise linear fit

we fit a linear model: f(x) = wy + wh(x) + Wyl (X) + wahy(x) + wihy(x) + wshs(x)

e with a specific choice of features using piecewise linear functions

X
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Example: piecewise linear fit
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o features: h(z)= (1,z,[z+0.75]T, [z 4+ 0.2]*, [z — 0.4] 7, [z — 0.8] 1)
 lambda=1 gives

w= [-0.0377, 0.00140, -0.00177, 0.01014, 0.00875, 0.01482]

 lambda=1e-6 gives

w=[-0.1382, 0.97846, -1.3467, 0.57375, -0.327/63, 0.2658]



Piecewise linear with 10 parameters

0.040 -

0.035 A

0.030 A

0.025 4

0.020 4

0.015 +

0.010 A

0.005 4

0.000 A

0.2

0.1 1

0.0 A

-0.2 A

® train data
= ground truth
- predictor

-1.00 -0.75 -0.50 -0.25 0.00

0.25

050 075 100

0.05

0.00 A

—0.05 A

—0.10 A

—0.15 A

—0.20 A

® train data
= ground truth
- predictor

!

-1.00 -0.75 -0.50 -0.25 0.00 025

050 075 100

® train data
= ground truth
- predictor
0.05 A
0.00 A
-0.05 A
-0.10 A
-0.15 A
-0.20 A l
-100 -0.75 -0.50 -0.25 000 025 050 075 100




0.000 -
~-0.005 1
~-0.010 -
-0.015 1
-0.020 +

~-0.025 -

* in general, fitting a model with more parameters than data points
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Fitting predictors with more parameters than data oin
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does not make sense
* but one can fit such over-parametrized models with regularization
* 10 piece linear model with 10 parameters
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Model complexity and lambda

Fitting predictors with more parameters than data points

0+
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small A\ large
complex model simple

e Having large regularization limits what type of models we
can choose from, hence enforces simpler models
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Theoretical analysis

- note that theoretical analysis is for the purpose of
understanding the performance of a proposed approach (in
this case Ridge Regression)

- for this purpose, we assume a specific model and analyze
the performance

- In particular, such theoretical analysis cannot be done In
real problems, as you do not know the underlying model

- however, it tells you how performance depends on the
problem parameters (like dimension, noise variance, true
model parameters, number of samples, and regularization
parameter)
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Exercise: simple example

 we analyze the resulting true error for a simple model,
to illustrate how error depends on the parameters of the problem

(training sample size n, number of features d, noise variance 02,

ground truth model parameter w) and the choice of regularization
parameter A

e model: y;

WT)C

8.

where x; € R%, y. e, € R

 we further assume that &; ~ N(0,67) is zero mean Gaussian

with variance o

2

e each feature is also independently a zero mean Gaussian with
unit variance, i.e. x;[ j] ~ N(0,1) for all j € [d]

e [d] = {1,

, d} denotes the set of first d positive integers

e w e R%is the ground truth model parameter, which is a fixed
deterministic vector



Exercise: simple example

* the Imear least squares predictor is given by
= X'X + D) X"y

= (X"X +AD7'X7(Xw + &) Ty = - I g
where we used the fact thaty = Xw + ¢ :
— VL‘ ‘r\ 3 o/(

—

A

rldge

* again using the fact that for any j = [d],

XX}y mez ~ 2 Elx[j1°] = n

T
which follows from strong law of Iarge numbers, and the fact that

x;[j] ~ N(O,1) has a varlance one, and foranyj # £ € [d]
(X"Xp7)= Zx [j1x[£] ~ 2 Elel 411 =

we will substitute (for S|mpI|C|ty of the anaIyS|s)

XIX+A) = (n+ /1)[

—

* the resulting predictoris —

P X Xw + X'¢)
ridge n4+ )T

L g

= 14% E

n+ A n+ A
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Exercise: simple example

e and the expected predictor is "
E[f., x)|x] = E[W....J x= wlx
fw ridge n+ A

* we are ready to compute the (conditional) bias:

(ELfy, (9131~ @) = (e T )
Wide ° n+ A

12
T+ A2

2

E,., [(ELf;. )]x]=fx) = & Elw’xx"w]
X~Dy Wridge 0 (7jI 5|_ /1)2

wlE[xx!w

ridge

(w!x)?

e the expected bias is:

T+ A2
/12

T+ A2

22Iwli3

T+ A2

wTIdxdw

where E[xx'] = 15,4 follows from the fact that x ~ N(0,I 5 ;)
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Exercise: simple example

* in a similar way, we can compute the (conditional) variance

£ [ (o 0~ EU, 1502 1] = E[ (03 = ——w7) 1]

ridge ridge

E [( eTXx)? x]

n -+

1
(n+ 1)?

x'E [XTegTX | x]x

62

(n + A)?2
o2 n
(n+A)?

n 1

x'(nDx

1115

where we used the fact that wq.. =

and Ex [X'ee’X] = Ex[X'E, [egT]X] = 02[EX[ *IX] = 0’Ex[X'X] = ¢°nl
and [E[XTX] = nl was computed 2 slides ago.

£,

« taking expectation w.r.t. (with respect to) x ~ N(0,1 5 ;), we get

2
@ lay] = 2

[E (fv’{/ ridge (n +A)2

ridge

(x) — ELf;,
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Bias-variance tradeoff w.r.t A

2 2
A7llwllz
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Cross-validation:

how to choose regularization parameter A,
or the degree of polynomial features to use
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Rule #1: Never use test set in training!

but, does choosing A based on test error count as using test data in training?
first wrong approach:

train 10 predictors with 10 values of A, each using all train data S..; .

compute test error on test data .., for all 10 models

est

pick A* that reported the smallest test error

deploy predictor f;+ S

test

why is it wrong?

because we used S

tes est

. in picking 4, we chose a model that works well on S,
> Ut =3

1
[Seal &

we sometimes use E¢ [ - | interchangeably with [£.[ - | (e.g. in Assignment 1)

test

orecisel, Eney dua oy Ue@) — 9] # Eg_|

this commonly happens in machine learning competitions, and the competition
organizers enforce several rules to prevent it

 for example, each team can evaluate their test data performance only once
per week



k-fold cross validation
* input

5y

test
rain and St

est

* procedure

test

1. randomly divide the §,,;, into k equal sized partitions:

rain
S, --8:)
2. define
tram\S — {l S Straln and 1 ¢ S]}
this operation \ is called “set minus”, as it is taking a
set away from another set

3. train k predictors, such that the first predictor is trained
on S,..;,\3; and validated on §;

train

o fStrain\Sl(x) minimizes 2 (-][rlgtrain\Sl(xl') o yl)
iEStram\Sl
« we keep track of error on the validation set:

traln\Sl( ) yl)z

test

% %! A

validation Train test

error; =

zeSl

. . repeat for each partition J-,j e {l,... .k}




k-fold cross validation

validation Train test

o First predictor fg \g () is trained on S;;,;,\S) I
and error, is evaluated on S, =

« j-th predictor fg

e finally, k-fold cross validation error is computed .

CITOr;
J I
1

e k=25to 10 seems to work well in practice

\S, ( - ) is trained on Stmin\Sj

and error; is evaluated on §; forallj € {1,..., k}

| &
SHO—fold = 7
Jj=

e small k like two leads to overestimating the true error
* Dbecause we are training on much smaller data size
* large k leads to many computations

e if k=N itis called Leave-one-out (LOO) cross validation
27
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(LOO) leave-one-out cross validation

e slower but more accurate estimation of the error

e | OO cross validation is an extreme case of k-fold cross
validation with k=n the total number of training samples

1 n
error oo = — 2 s (09 = 327
=1

e we leave one data out and train a model, hence the name
leave-one-out

e as each model is using n — 1 training samples, this LOO
validation error provides a close approximation of the true

error of a model trained on all n training samples

e however, if n=100,000 (which is common size of modern

dataset), it takes 100,000 times longer run-time to finish
LOO cross-validation
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example:

 Given 10,000-dimensional training data with n samples,

e First, we pick 50 features that have highest correlation
with the y.’s such that have largest

pick 50 j’s that have largest

\/ Z?zl xi[j]2
* We then use k-fold cross validation to train a ridge

regressor on those 50 features, and choose A using the
cross validation error

e What is wrong with this?
For example, did we use any of the validation data §; in
training, for example, a model fStrain\Sl(x) ?
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