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Generalization:
how do we know which model is better In
predicting unseen data?



Generalization

* we say a predictor generalizes if it performs well on unseen data
e formal mathematical definition involves probabilistic assumptions
* first, we study practical methods for assessing generalization



In-sample and out-of-sample data

* the data used to train a predictor is training data or in-
sample data

 we want the predictor to work on out-of-sample data

* we say a predictor fails to generalize if it does not
perform well on out-of-sample data
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e train a cubic predictor on 32 (in-sample) white circles: MSE 174
e predict y for 30 (out-of-sample) blue circles: MSE 192

4 e conclude this predictor generalizes, as in-sample MSE ~ out-of-sample MSE



Out-of-sample Validation

a way to mimic how the predictor performs on unseen data
key idea: divide the data into two set for training and testing

training set used to construct (“train”) the predictor
test set used to evaluate the predictor

we assume that test set is similar to unseen data
test set should never be used in training



Out-of-sample Validation

given a single dataset S = {(x;, y;,) }'_,
we split the dataset into two: training set and test set

selection of data train/test should be done randomly
(80/20 or 90/10 are common)

we use training error (i.e. empirical risk on training dataset) for optimization
(or finding the model)

minimize &, (w) = Z £(f(x), ;)

| Straln | icS

train

we use test error (i.e. empirical risk on test dataset) for validation,
checking if the model behaves as expected

L et (W) = D (X))

[ Sest] &

test

we say a model or predictor is overfit if

A < &

train test



small training error large training error

generalizes well

possible, but unlikely

small test error performs well

fails to generalize generalizes well
large test error performs poorly



Choosing a predictor

e validation is useful in choosing a predictor

e typically, one trains multiple candidate predictors and
chooses the predictor that has the smallest test error

e Example: Diabetes

10 explanatory variables
e from 442 patients

e we use half for train and half for validation
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Example: Diabetes

Features Train MSE Test MSE
All 2640 3224
S5 and BMI 3004 3453
S5 3869 4227
BMI 3540 4277
S4 and S3 4251 5302
S4 4278 5409
S3 4607 5419
None 5524 6352

e test MSE is the primary criteria for model selection

* Using only 2 features (S5 and BMI), one can get very close to
the prediction performance of using all features

e Combining S3 and S4 does not give any performance gain



Overfitting

 a model that fits the training data well but performs poorly on test data suffers from
overfitting

* overfitting happens if we use a model with high model complexity
e for example, for linear regression with polynomial features

A

g = f(x) = wo+wix + wex® + - - + wya?
« N =60 data points, and p € {3,4,5,20 }
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How does one choose which model to use?
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Model complexity
* first use 60 data points to train and 60 data points to test

* then choose degree 5 as per the above test error

e now re-train on all 120 data points with degree 5 polynomial model
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* |et us first fix sample size N=30, collect one dataset of size N, randomly shuffle
the dataset, and fix one training set S,,,;, and test set 5. via 80/20 split

* then we run multiple validations and plot the computed MSEs for all values of

p that we are interested in
true model complexity
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N=24 ( = degree of the polynomial)

* Given sample size N there is a threshold where training error is zero
* Training error is always monotonically non-increasing
* Test error has a trend of going down and then up, but fluctuates
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to N=40 , and see how the curves change

true model complexity

* |et us now repeat the process changing the sample size
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* The threshold moves right
* Training error tends to increase: more points need to fit

e Test error tends to decrease: overfitting happens later
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* |et us now fix predictor model complexity p=30, collect multiple
datasets by starting with 3 samples and adding one sample at a time
to the training set, but keeping a large enough test set fixed

* then we run multiple validations and plot the computed MSEs for all
values of train sample size Ntrain that we are interested Iin
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 There is a threshold below which training error is zero (extreme overfit)

 Below this threshold, test error is meaningless, as there are multiple predictors with
15 zero training error

e Test error tends to decrease
* Training error tends to increase

why do they meet?
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From practice to theory

Low Variance High Variance

Low Bias

High Bias

Courtesy of Scott Fortmann-Roe
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Notations

the model is specified by the distribution of data p, , for the paired examples (x;,¥;)

we denote our predictor by ¢ (x) to emphasize that our predictor depends on the

train

training data S, = {(x;, ;) }i_, of size n, each coming i.i.d. from distribution p, ,

. +
we denote the test data by S = {(x; y) )27 |

when we take expectation of a function of random variables, we use the following
notation to indicate what we are taking expectation of:

[E(x,y)pr,y[F (x, y)]
indicating that the pair (x, y) is drawn from Pxy

of size m, also i.i.d. from Pry

we will simplify the subscript, whenever it is clear from the context, for example we
might write

E, [F(x,)]
or even

E[F(x, y)]
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Expected test error

goal of training a predictor is to get test error small, defined as the empirical risk on
the test set

Y (s, () =)

test
S
| test | leStest

because this is a surrogate of the expected error on (randomly chosen) unseen data

the expected mean squared error (true error) on a new data (x, y) is defined as

gtrue = [EStesthx % traln ~Dx y[gteStJH_m
_ N2
o HEStesth)’c?,ly’Straian)rcl,y[ Z (f‘vgtram(x) yl)

i=n+1

train

[E (x’y)pr,y’Straianx y[(f:g (x) y)z]

where the last line follows from the i.i.d. assumption, and this true error is what we
really care about, and hope to minimize

for simplicity, we will write

2
gtrue = [pr y’Straln[(‘fstraln(x) y) ]
we will decompose this expected test error, to identify three sources of error

demo4 tradeoff
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Canonical model

recall the law of total expectation (or tower rule):
E, [Fex,»)] =E, |E, [F(x,y)|x]],
for any function F(x, y) and any joint distribution Pry

we focus on analyzing the conditional expectation
2
[Epylx’Strain[(fS (X)—y) | x]

train

as by the law of total expectation (or tower rule), we have

Ep 5l (s, () =01 =E, [E, s [(fs (0—y71x]

S train train S train train

the bias-variance tradeoff we show for the conditional expectation, will imply a
similar result on the joint expectation Pxy by simply taking the expectation with

respect to p, to the resulting formula (we do this in equation (1) on slide 21)

this implies that we only need to specify the conditional distribution Py|x O proceed

with the analysis, and we will focus on the canonical model where
y=Jjx) + ¢,

where ¢ is drawn from N(O,az), zero mean Gaussian with variance ¢

note that this use of canonical model is without loss of generality, as it the same

analysis can be used to capture bias-variance tradeoff for any p, , but with heavier

notations
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e model: y; = fy(x;) + ¢; for both training and test samples

Jolx

train

A random predictor f¢  (x) Py|x

X fS (x)

fo(X)

(fo(x) — y): error due to

Strain randomness in the
model mismatch sampling process

(fs

— Jo(x)): error due to

* we will analyze the conditional expectation of the true error

20

pylx’ train

[(fs  (x) —y)*|x]

train



Bias-variance tradeoff

e the conditional true error can be written as

E Sl s ) = 07 1] = E[(

train train

) = /@) = (v = @) ) 1 4]

A B
= Eg[(fs,, 0 = /@) [x]1+E, [(f() —y)?|x]
‘ Iearnind error=0 - irreducible error=c> 1

this follows from the fact that E[(A — B)?] = E[A?] — 2E[AB] + E[B?] and
the noise is zero mean, i.e.

E[AB] = E[(fs_ (¥) =S = fo) [x] = Elfg_ (x) = fo(x) | x]E[e]|x] =0

train train

=0

* irreducible error
* s due to the inherent noise in the samples, and is impossible to get rid of

e does not depend on our predictor f(x)
 |Is alower bound on achievable expected test error
* learning error
e is due to the randomness (and limited sample size) in the training data

,, * Further decomposed into bias and variance
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the learning error can be further decomposed (with a similar trick) as

Ee [(fi () —f00%x] = E[((fs @ —ELfy ®Ix]) = (fex) — E[fy (0)]x])7]4]

train train train train train

= E[(fy @) —ELfs D] + () —ELfs @) ]x])

train train train

7

Variance Bias’

this follows from E[(fs (x) — E[fs _ (x) |xD|x] =0

train

this theoretical analysis explains the behavior of true error gtrue

Pive = o’ +E[(fy @) —Elfs 01D +E, [(H) - Elfs ]x1)7] (1)

—— train train train

irreducible error (expected) Variance (expected) Bias?

Whether we condition on x or not when referring to variance and bias should be clear
from the context

—— bias?
variance
— total

bias

* measures how the
predictor is mismatched with

the true model in expectation variance+bias?

variance
* measures how the predictor

varies each time with a new
training datasets ' variance W

0.0 0.2 04 0.6 0.8 10
complexity
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e recall the test error is an unbiased estimator of the true

error, i.e. &£

{rue

= E[L s

 and theory explains true error, and hence expected
behavior of the (random) test error

error

N
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Low Variance
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|

Test error &

/

E [g train(Strain)]

T

True error £ . =

Train error

;ptest(Strain’ Stest)

[E["(Z test(Strain’ Stest)]

Zz train(S train)
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Simple Gaussian example

e model: y; = wx[1] + wox;[2] +0 - x,[3] + ¢
o x[1],x]2],x]3], € ~ i.i.d. Gaussian N(0,6?)
e training data {(x;,y,)}._;

X (1] x[2] x03]
let data matrix be X = : : :

= Rnx?)

x, 1] x,[2] x,[3]
e X]:,1] denotes the first column of X



Simple Gaussian example

e Example 1 (simple predictor):
 consider a simple model of fitting only the first feature

A\

y = wix[1]
* linear least squares gives

W= XELXELIDXE L 1y

_xl[l]_ Vi £ |
with X[: , 1] = . |,andy= | : = w X[:, 1] +w,X[:,2]+ | :
xn[l] _yn_ _gn_
cancels each other for the first term —éj

e plugging iny in the equation, we get
Wy o= XL, XD XL 1 XL 1w, + X[, 21w, + é)
= w; + X[ L1 XL 1D XL 1T X[, 2] + €)



20

Simple Gaussian example

for large enough n, ;

X[:, 1'X[:, 1] = ) x[1]? =~ no?,
i=1
by law of large numbers, and we will use this approximation to simplify the formula:

Wy = w+—=X[, 1 X[, 2] +€)  and
no

E[w,] = w

where we used the fact that X[:~1], X[: , 2], € € R" are independent zero-mean vectors
we are ready to compute the bias and.variance

first, conditioned on x = (x[1], x[2], x[3]D

bias? = (ELf()] —fo)? = (wxl1]= w11+ wyx[2]) ) = (wp)?x[212,
and taking expectation over p

[pr[biasz] = (wz)zo2
note that
e this does not decrease with (training) sample size n

e thisis due to not including x[2] in our prediction, in other words, using a too simple
predictor



Simple Gaussian example

e Now for the variance, conditioned on x = (x[1], x[2], x[3]),
since we have w; = w; + —X]: l]T(sz[: ,2] + ¢€)

X no?
and E[w,] =[w,

[E[(f(x) — E[f(0)])*| x]

e variance = ,

= [ <—X[ 1w, X 2]+8)x[1]) |x]

no?

x:l]Z n 5

= oy <[E[( szxi[l]xi[Z] +Xi[1]8i> ])

- 2[224< [ 2(w2x[1]x[2])2+Z(x[l]g)z+22(w2x[1]2x[2])+ Z (wzx[l]x[2]+x[1]e)(w2x[1]x[2]+x[1]8))]>
i#j=1
x[1]? ~ ((wp)* + Dx[17?

n

. and E[variance] =

e this decrease with (training) sample size n
27



* Analysis explains the SO 1 B
empirical observation on o | AN
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the right, on error vs. o Y
sample size N 3
i '~.‘
1001 e LI
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true error £, ... | ()2 + 1)
E[variance] =

n

train error &£ -

irreducible error

sample size
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e plugging inr in the equation, we get

Simple Gaussian example

e Example 2 (moderate predictor):
* consider a moderate model of fitting the first two features

A

y = wx[1] + w,x[2]

* then, we will show that bias is smaller (in fact zero) and variance is larger, i.e.

. [pr[biasz] =0
207

. [E[variance] = —
n

* linear least squares gives

VAVI = (X[:,1: 2]TX[: 12D X[, 1 Z]Ty
Ws

_xl[l] Xl[z]_ V1|
with X[:,1: 2] = : : |,andy = | : = w X[:, 1] + w, X[: ,2] +

_Xnil] xnt2]_ Yn

Wy

= X[:,1:2"X[:,1:2D)" X[, 1: 21" (X[: ,1: 2] + €)

Wi
W, Wa
+ (X[:,1: 2]TX[: 1:2D7 X[, 1 2]Te

1
14%)




Simple Gaussian example

e for large enough n,

> x[1]° > x[11x[2] i
no
O a2 YT a2 0

by law_of large numbers, and we will use this approximation to simplify the formula:

X[, 117 X[: . 1] =

12
(\®)

o
1

| = +—X][:,1:2]'¢ and
_Wz_ _W2_ n0'2
= Wy _Wl_
W (s
| V2] |~

where we used the fact that Xj:, 1], X[: , 2], € € R" are independent zero-mean
vectors

 we are ready to compute the bias and variance
e first, conditioned on x = (x[1], x[2], x[3])

bias? = (E[f(0)] —f;0)? = (il 1]+ wyx[2] — (wyx[1] + wyx[2]) )" = 0,

e note that
30 e this is an unbiased predictor



Simple Gaussian example

Now for the variance, conditioned on x = (x[1], x[2], x[3]),

. Wi Wi 1 T
sincewe have | . | = +—X][:,1:2]'¢
W2_ W2 I’le
Wl W
and E Al = :
) W2

variance = E[(f(x) — E[f(x)])*|x]

— E[(#gTX[: 1 2] ﬁ;] >2|x]

nc4

([E [( Z ([21x02] + xi[l]x[l])el-)zl )
=1

@I + 2216t x[117 4 x[2)°

nc* n

, 262

and [E[variance] = —
n

this decrease with (training) sample size n
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Simple Gaussian example

e Example 3 (complex predictor):

consider a complex model of fitting

Va\

y = \;\\/I.X[l] + WzX[z] + V/i/z.X[:S]

. 2 .
[pr[blas] = 0

, 367
E[variance| = —
n

we skip the detailed proof here, as it is almost identical to the previous
one



e this explains the observation on the bias-variance tradeoff

[pr[biasz] = (W2)262 0
, ((wz)2 + 1)o? 262
E[variance] = —
Error n n
bias?

33

Error

362
n

10¢

10 3

109 4

1071 5

1077 4

1077 o
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