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Predictors



Data fitting

e goal: predicting “How much is my house worth?”

e data

(2318 sq.ft., $315k)
(1985 sq.ft., $295k)
(2861 sq.ft., $370k) data pair or example

(Jil,y1)
($2,y2)
(z3,y3)

(Tn,yn) = (2055 sq.ft., $320k)
 hope/belief: We think y € R and z € R? are approximately related by

y ~ fo(x)

e x |s called the input data
Y is called the outcome, response, target, label, or dependent variable

e ¥ Is what we want to predict



Features

often, the input data needs to be pre-processed to be applied
to a machine learning algorithm

these predefined processed representation of the input data is
called features

we use X to denote raw data input, and h:R9— Rk to denote
corresponding feature vector

o o)
r=| . ha)= | .
E fd]_ hi(a).
for example,

* x is a document, then h(x) is word count histogram
(k=273,000 for English or 106,230 for Chinese();

e X is an email, then h(x) is the count of trigger words
e X is a facial image, then h(x) is hair color, beard, skin tone



Predictor

o we seek a predictor or model f: R? — R

e for an input data x, our prediction of the label ¥ is

gy = f(z)
price $

ata pair or example

é sq. ft.

e small error on an example, f(x;) =~ vy,
s implies that we have a good prediction on the ith pair (z;, y;)




a machine learning algorithm is

green line shows the prediction f(x)

price

a principled recipe for producing a predictor, given data

data pair or example

Data is drawn from y; = fo (CL’Z) + €
and the black line shows fo(x)

Q

square feet

7 square feet

* |eft plot shows nearest neighbor prediction

* right plot shows cubic polynomial fit f(z) = ao + a1z + aza® + asx

3

e we want a good prediction on pairs we have not seen

v

demol1_1nn_lin.ipynb



Two schools of thoughts

e machine learning Belongs to a set of of functions
(to be defined by the statistician)

given {(x1,y1),...,(Zn,yn)}, find a predictor | f € F

* any machine learning algorithm can be derived from

Empirical Risk Minimization Maximum Likelihood Estimator
y = folx) y = fo(z) +e¢
with a given loss function £ with known pdf of €
] L i)y Yi P(y;, = ;
min 2 (f(@i); ys) e 11 (yi = f(z:) +¢)
8




> & J J/J — ‘J ] soprano (S)
° —— alto (A)
" o
® J J e
: r ] tenor (T)
C)z P H = i
- : P bass (B)

e Example: Google Harmonizer
e Training data
e |nput data x: soprano notes
e Qutput data y: alto, tenor, bass notes
e Jest data
e |nput data x: soprano notes
r=| 0,0,1,0,---,0 ,1,0,---,0,0,0,0,0,1,0,---]

——" S——
pitch of the first note  duration

9 https://www.google.com/doodles/celebrating-johann-sebastian-bach
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Regression |Classification

e Linear regression

Nearest neighbor
Decision trees
Bootstrap

Deep Neural Networks

Linear predictors (linear regression):
first class of predictors of interest
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Linear predictor

The models we choose are guided by our belief in the real world data

(one dimensional) linear regression model assumes each data point comes
from a linear model with an independent additive noise ¢;

Independent noise
added to each sample

Yi = Wyt WX+ g <

(one dimensional) linear predictor makes predictions with a linear function
of the input x

y = f(x) = Wwo+wx
strictly speaking, this is an affine model

 Linear function has the form f(x) = wx

e Affine function has the form f(x) = wy + wx

In this class, we use affine functions, but call them linear, and use those
terms interchangeably
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Linear predictor

In general, linear regression model can be multi-dimensional

flr) = wo+wi x|l +wex2] 4+ -+ + wq x|d|

T
=lw
o
w1 o
column vector w = row vector w' = [wo w1
_wd_
wo, W1, ..., wWq are the model parameters

In this multi-dimensional case,

a linear function has the form
fx) =wix[1] + wyx[2] + -+ + w x[d]

and an affine function has the form
fx) =wy+wix[1] +wyx[2] + -+« + w x[d]

wq|
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sq. ft.

once you fit a model to the data, e.g. f(z) = 10,000 + 141 x
- a seller with a house x = 2511 sq.tt. can predict the price

- a buyer with money y — $364k can predict the size
interpretation of the parameters

e Wo is the shift: price of land with no house
e W1 is the slope: how much price goes up per sq.ft.
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Interpreting a linear model

* |n general,
y = f(x) = wo+ wiz|l] +wsx|2]|+ -+ wyx|d]
e w3 is how much the (predicted) price increase when z|3] increases by 1
e w7 = 0 means the price does not depend on z|7]
e the constant term wgy predicts when all features are zero
e for notational consistency, sometimes we say x|0] = 1 is a constant feature

e in general, w small implies the predictor is insensitive to changes in x

f) = fD)] = [wix —w g = [w/(x=D)| < [Iwll,llx - X,

This follows from Cauchy-Schwarz
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Cauchy-Schwarz inequality

e for any two vectors x, y € R, the fol

lowing inequality holds

2

d d
X:

in)’i S \

=1 I

- -
-

o\

d
2.
j=1

XTy

X121yl

(xal)2 is called the Euclidean norm,

where ||x||, = \/(Xl)z (x,)°

2-norm, or L2-norm, and measures t
the point x

parameter w has a small norm ||w||,,

ne Euclidean distance from the origin to

hence, |f(x) —f(X)| < ||wll,l|x — X||,, implies that if the learned model

then the prediction f(x) does not change

too much as we change from a data point x to another data point X
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F(x) = 100,000 + 500 x

F(x) = 150,000 + 400 x

Empirical risk minimization:
the process of finding a good linear predictor



Quality metric

e arisk orloss function /: R xR —- R
determines which model is a better fit

e smaller £(7,y) indicates that g is a good approximation of y
e typically (but not always) ¢(y,y) = 0 and £(gy,y) > 0 for all g,y

* Typical choices
e quadratic loss: /(9,y) = (¢
e absolute loss: /(7,y) = |9

17
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Empirical risk

 How does the predictor f( - ) fit a my data set {(x;,y;)}'_, with

loss £ ?
 empirical risk is the average loss over the data points

l « 1 ¢
L = —Zf@iayi) = —Zf(f(xi)ayi)
A A

e if £ is small, the predictor predicts the given data well

e When the predictor is parametrized by w, we write

1 n
Fw) = — ) L.
=1

to make the dependence on w explicit
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Mean squared error

« with the most popular choice of squared loss £(y,y) = (y — y)z,

empirical risk is mean-squared error (MSE)

1 n
W) = MSE = ;E(fwo@-)—

e often we use root-mean-squared error, RMSE =
same unit/scale as the outcomes y;'s

£(f>(x), x) = ( fz(xi)/—y);

£, %) = () = y)°

)’i)z

MSE, which has the

"~ £ (x) = 100,000 + 500 x

/\
fr(x) = 150,000 + 400 x
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Empirical risk minimization

e Training:

choosing the parameter w in a parametrized predictor f, (x) is called fitting
the predictor to data or training the model

empirical risk minimization (ERM) is a general method for fitting
parametrized predictors

ERM: choose w that minimizes empirical risk < (w)

minimize,, Z£(w)
algorithm: often there is no analytical solution to this minimization problem, so
we use numerical optimization

for the squared loss example, this is

1 n
minimize,, — 2 () = y))°
i1

if loss is squared loss and f, (x) is a linear model, then it is special in the sense
that it has a closed form (or analytical) solution

This closed form solution is what we study in the rest of this chapter (the set of
slides under the title regression)



21

Regression |Classification

e Linear regression

 Nearest neighbor

e Decision trees

e Bootstrap

e Deep Neural Networks

Least squares linear regression
with a choice of squared loss



Training a model is finding the best parameters

* | east squares linear regression
e predictor: linear with parameter w € R¢
v = f,(0) = wix
* |oss: squared loss
£3,y) = G —y)
e empirical risk is MSE

1 n
L(w) = — lzZl (wal- — yi)2

e ERM: choose model parameter w to minimize MSE

e called linear least squares fitting or linear regression
e linear regression is particularly sensitive to outliers

22
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Least squares formulation

e express MSE in matrix notation as

] « 1
Y (W'w=y)" = ~IXw -yl
na= — n

=W

where data matrix X €

X =

(x1)T

Xi

Rnxd

, Xw =

_(xn ) T_

(x1)TW

_(xn )TW_

,and Yy =

and outcome vectory € R" are

Y1

Yn

and ||y||, is a 2-norm, Lz-norm or Euclidean norm of a vector

such that

I¥ll2 = \/2 ()? and lyl3= ) )
i=1 =1
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Least-squares solution

e The best parameter w is the solution to
minmize,, || Xw — yH%

 When X has linearly independent columns (which implies

that X is a tall matrix and n > d ), there is a unique
optimal solution

W e = XIX)" !XTy
e optimal prediction is

S (X)) = W{Sx = y/XX'X) x

demo?2_lin.ipynb
demo3_diabetes.ipynb
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Linear models with higher order features
with human-engineered features



Linear regression with polynomial features

» polynomial feature vector /i : R? — RX
for example with d=1, each feature is a monomial of the form

1
X

hix) = | x?

xk—l

e and the predictor is a linear function fo the polynomial features

e MSE with k-dimensional w is

1 n
Fw) = — Y, wlh) = y)?
i=1

* in the 1-dimensional example, it is
n

1
L(w) = ; Z (Wo + wix + ---wk_lxk_l — y)2
i=1

* Dbut, low degree polynomials might not capture the true relations

* domain knowledge help

26 demo2_lin.ipynb
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Seasonal features

(x;,y;) = (month-year, average house price)
(Jan 2001, $255k)
(Feb 2001, $268k)

log(Price)

12.5
I

13.5 14.0
| |

13.0
|

Wt

12.0
|

11.5

vy
Dt
L

1997-01 1999-01

2001-01

2003-01

2005-01 2007-01 2009-01 2011-01 2013-01
Month




Seasonal features

(x;,1;) = (month-year, average house price)

(Jan 2001, $255k)
(Feb 2001, $268k )

log(Price)
13.0 13.5 14.0
I I

12.5
I

12.0
|

11.5

1997-01 1999-01 2001-01 2003-01 2005-01 2007-01 2009-01 2011-01 2013-01
Month

e more buyers in summer drive price higher

e but, best (low-degree) polynomial fit misses the seasonality
28



Seasonal features
* known relations like seasonality can be manually added
as new features

magnitude phjse
\
f(x) = wWqo +wi1x + ngQ -+ wgacS + w, SIn ( ;T; | w5>

_——

o
-
0
o -
—~ ©
8 2
o
>
9 . . . .
a1 best polynomial + sinusoidal fit
but, it is non-linear
Q
S -
L()' —

29 I I I I I I I I I I I I I I I I I
1997-01 1999-01 2001-01 2003-01 2005-01 2007-01 2009-01 2011-01 2013-01



Seasonal features

e reparametrization from a sinusoidal model to linear model

magnitude phase

\ o

f(x) = wo +wix + wax” + w3z + Wy sin( T | w5>

trigonometric identity : sin(a 4+ b) = sin(a) cos(b) 4 cos(a) sin(b)

. (21 . (2T . 21
Wy sm( | w5> = 1wy cos(ws) sm( ) - wy sin(ws) cos (—)
12 —_——— 12 N 12
’JJ4 ”LIJ5
2 s . . (27X N 2T
f(x) = wo+ wix + wez” + wix” + Wy sin (ﬁ) + W5 COS (?)
feature 5 feature 6

* why use sinusoidal features?
30



Linear models with higher order features

e compact notation of the model

f(x) = woho(z) +wihi(x)+---+wphp(x)
= w! h(z)

e vector notation of the model parameters w and features h(x)

wo N
w1 72
W = : h(z) = 23
sin(27x/12)
WP | cos(2mx/12)

e as the features are hard coded, human ingenuity/insight
needed in feature engineering with domain knowledge

31



Modern machine learning tasks are complex

* predict "How old is this person?”

e how do we know which feature to use?

e study automated feature extraction using deep neural networks
32
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Theoretical analysis
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Least squares solution

* why is the solution of
2

wig = argmin || Xw —y|[5
w ZL(w)
equal to

W e = XIX)" Xy

Wi

WLs

VZ(w))

VZ(Wig)

e note that || Xw — yH% is a strongly-convex function
when X has linearly independent columns

* minimizer of a strongly-convex function is unique, and
can be found by taking the gradient V £ (w) and finding

w such that the gradient is zero
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Simple example

e for 1-dimensional w, consider an example

ZLw) = (2w — 4)?

VZw) = g = 42w —4)

ow

VZ(w*)

setting derivative to zero, we get w* = 2

ZL(w)

e in general dimensions, let % : RY - R be a multivariate function such

that w = £ (w)

e its gradient is defined as a vector-valued function V.Z : R? - R such

that

VZw) =

0L (w) |

aWI

0L (w)

Owd
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o L(w)=2wi —4ww, + 3ws + 5wy — 3w,

0L (w)
. awl _ 4W1 - 4W2 + 5
L VEW= g | T l—4w1 + 6w, — 3
ow,

e setting the gradient to zero gives
w* = (W, wi) = (-9/4,-1)
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Simple rules

e there is a set of simple rules that help compute the gradient of functions
represented by matrix vector multiplications

e Rule1: V(||w||%) = 2w
e Rule2: V(b'w)=»b

e Rule 3: VSZW(AW —b) = ATVx"CZ(x) |x=Aw—b

. for Z(w) = || Xw — y||3, we claimed that VZ(w) = 2X'(Xw —y)
* using above rules,

. VIXw—yll3 = X'V, (1211 | —xyy = X2(Xw — y)

* this gives

VLw) = 2X'(Xw —y)



Alternative derivation via summation notation

e let Z : RY - R be a multivariate function w > Z(w)

e |ts gradient is defined as a vector-valued function V.Z : RY - R such that

[ 0Z(w) |

awl

VZw) = :
0L (w)

aWd

o for Z(w) = || Xw — yllg, we have VSZ(W) 2XT'(Xw —y)

which follows from ||Xw—y||2 = Z(x W — yl)2 = Z({ZX[J] } )’,)

o o O Tl - y,>2 : d

*  Jdw, - Z ow = Z 2xl[k]( ZX[]]W y,)

i=1 k i=1 j=1
) Z X[kl w —y) =2 X[k, ;] Xw —y)

=1 k-th row
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Once we have the gradient,

o for Z(w) = ||Xw — y||%, we have
VZw) =2X'Xw —y)

e hence, setting the gradient to zero, 2X’(Xw — y) = 0, we get
X' Xw =Xy

e when X has a full row rank (i.e. when the columns of X are linearly
independent, X’ X is invertible

* this gives
w=(X'X)"'X'Y

e this is the optimal solution w; ¢ we have been using
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Two schools of thoughts

e machine learning Belongs to a set of of functions
(to be defined by the statistician)

e given {(x1,¥1),.-.,(Zn,yn)}, find a predictor |f € F

This could be the set of all degree-3 polynomial functions,
if we use degee-3 polynomial features and linear regression

 any machine learning algorithm can be derived from

Empirical Risk Minimization Maximum Likelihood Estimator
y =~ fo(z) y = fo(r) +¢
with a given loss function ¢ with known pdf of ¢
min ) £(f(x),y;) -
feF 21 J%i).y max P(y; = f(x;) +¢)
1= fer o
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Probabilistic interpretation of least squares

e given data {(x;,y;)}'_, and a probabilistic model with

parameters w and 62,
Vi=wix+e,
with &; ~ 4/(0,6%) distributed as i.i.d. Gaussian with zero mean
and variance ¢*
e recall pdf of Gaussian distribution is
|

1
P(z) = e 2
(2) (2762)1/2

e the log-likelihood of a data point (x;, ;) is defined as
log(P(y; —w'x)) =

1
> wlx; —y)* — > log(27c?)
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n

1 d
D log(P(; = w'x)) = Y { =W yll3 - 5 log(20?)

2
O
=1 =1

* the log-likelihood of the dataset is
n

* maximum likelihood estimation (MLE) is an algorithm that

outputs a model parameter w & R4 such that it maximizes
the log-likelihood:

- | 1
Wy = arg max Z { (wlx, —y)* — Py 10g(271'62)}

w i1 62
n
- argmin 3 {75 3?)

i=1
arg min || Xw — yH%
W

}
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