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Interpretability of Neural Networks
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Interpreting neural network with saliency map
• why did neural network classify the image as a “dog”?
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“Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps” 

Simonyan, Vedaldi, Zisserman, 2014

Saliency map of the image  and the NN model  is defined as x f( ⋅ ) ∇x fdog(x)

NN is trained to classify an input image
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allows one to interpret NN decisionSaliency map



Interpreting neural networks with occlusion sensitivity
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“Visualizing and Understanding Convolutional Networks”, Zeiler, Fergus, 2013



Interpreting neural networks with occlusion sensitivity
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Attacking Neural Networks with 
adversarial examples: 

NNs are vulnerable
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Attacking neural network with adversarial examples

• as an adversary, we want to generate an image that looks like a 
cat, but is classified as iguana (for a specific given NN classifier)
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Attacking neural network with adversarial examples

• as an adversary, we want to generate an image that looks like a 
cat, but is classified as iguana (for a specific given NN classifier)
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x − ϵ sign( ∇xℓ( fw(x), yiguana) )
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• the adversarial examples are misclassified as ostriches, 
and in the middle we show the perturbation times ten. 
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•  In another experiment, you can start with a random noise 
and take one gradient step


•  this often produces a confident classification

•  the images outlined by yellow are classified as "airplane" 

with >50% confidence
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Attacking neural network with adversarial examples

• as an adversary, we want an image to be misclassified (to 
anything but Panda)



Attacking autoencoders
• Autoencoder: neural network that compresses the input, 

and recovers an example that is close to the input
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CNN

Input image

Latent code

Deconvolutional 
NN

Encoder Decoder

Output image

• encoder and decoder are neural networks, jointly trained to 
minimize the squared loss between the input and output images
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•  one can create adversarial images that is reconstructed 
(after compression) as an entirely different image 

Adversarial examples
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Adversarial testing examples
•  First reported in ["Intriguing properties of neural networks", 

2013, by Christian Szegedy, Wojciech Zaremba, Ilya 
Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, 
Rob Fergus]


•  Led to serious concerns for security as, for example, 

•  one can create road signs that fools a self-driving car to 

act in a certain way 

•  this is serious as 

• there is no reliable defense against adversarial examples 

• adversarial examples transfer to different networks, 

trained on disjoint subset of training data 

• you do not need the access to the model parameters; 

you can train your own model and create adversarial 
examples  


• you only need a black-box access via APIs (MetaMind, 
Amazon, Google)



Adversarial examples with bloack-box access to NN
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•  ["Practical Black-Box Attacks against Machine Learning", 
2016, Nicolas Papernot, Patrick McDaniel, Ian 
Goodfellow, Somesh Jha, Z. Berkay Celik, Ananthram 
Swami] 


•  no access to the gradient of the NN classifier, but only 
allowed black-box access to the output



Physical-world adversarial examples
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•  ["Adversarial examples in the physical world", 2016, 
Alexey Kurakin, Ian Goodfellow, Samy Bengio] 


•  You can fool a classifier by taking picture of a print-out. 

•  one can potentially print over a stop sign to fool a self-

driving car 



This 3-dimensional turtle is designed to be classified as “rifle”
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Classified 
as rifle

Classified 
as other



18

Defense mechanism



Defense mechanism 1
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• include adversarial testing examples (but with the correct 
classes) in the training data. 

label: bird label: bird
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 Why are modern classifiers vulnerable  

• small margin due to overfitting / high representation power

• there exists a direction from any example that can reach a 

boundary in a short distance



Defense mechanism 2
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•  Defensive distillation:  
• 	 ︎  Two models are trained 


• 	 ︎  model 1: trained on the training data in as standard manner 


• 	 ︎  model 2 (the robust model) : is trained on the same training data,  
but uses soft classes which is the probability provided by the first  
model 


• 	 ︎  This creates a model whose surface is smoothed in the directions  
an adversary will typically try to exploit, making it difficult for them to 
discover adversarial input tweaks that lead to incorrect 
categorization 


• 	 ︎  [Distilling the Knowledge in a Neural Network, 2015, Geoffrey 
Hinton, Oriol Vinyals, Jeff Dean] 


• 	 ︎  original idea came from model compression


• 	 both are vulnerable against high-power adversary



Unsupervised Learning with Neural Networks
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Deep generative model
• traditional parametric generative model

• Gaussian:  

      


• Gaussian Mixture Models (GMM) 
 

    


• deep generative model

• easy to sample

• high representation power 

• but no tractable evaluation of the density (i.e. p.d.f.)

fμ,σ(x) =
1

2πσ2
e− (x − μ)2

2σ2

f{μi},{σi},{πi}(x) =
k

∑
i=1

πi
1

2πσ2
i

e
− (x − μi)

2

2σ2
i
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Deep generative model
• sampling from a deep generative model, parametrized by 


• first sample a latent code  of small dimension , 
from a simple distribution like standard Gaussian 


• pass the code through a neural network of your choice, with 
parameter 


• the output sample  is the sample of this deep 
generative model

w
z ∈ ℝk k ≪ d

N(0,Ik×k)

w
x ∈ ℝd

24

⋮
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⋮ ⋮
x[d]



Deep generative model
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Generative model
• a task of importance in unsupervised learning is fitting a 

generative model

• classically, if we fit a parametric model like mixture of 

Gaussians, we write the likelihood function explicitly in terms of 
the model parameters, and maximize it using some algorithms 

•               


• deep generative models use neural networks, but the likelihood 
of deep generative models cannot be evaluated easily, so we 
use alternative methods

maximizew

n

∑
i=1

log ( Pw(xi) )
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Goal
• Given examples  coming i.i.d from an unknown 

distribution , train a generative model that can 
generate samples from a distribution close to 

{xi}n
i=1

P(x)
P(x)
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Adversarial training
• Classification

• Consider the example of SPAM detection


• Each sample  is an email


• Distribution of true email is 

• Suppose spammers generate spams with distribution 

• Spam detection: Typical classification task


• Generate samples from true emails and label them 


• Generate samples from spams and label them 

• Using these as training data, train a classifier 

that outputs 
 

               
 
for some neural network  with parameter  
(this is the logistic model for binary classification)

xi
P(x)

Q(x)

yi = 1
yi = 0

ℙ(yi = 1 |xi) ≃
1

1 + e−fθ(x)

fθ( ⋅ ) θ
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Adversarial training
• Applying logistic regression, we want to solve 

 

           


• in adversarial training, it is customary to write 

    
 
which is called a discriminator 

• and find the “best” discriminator by solving for  
 

 

as 1 labelled examples come from real distribution  
and 0 labelled examples come from spam distribution 

max
θ ∑

i:yi=1

log( 1
1 + e−fθ(xi) ) + ∑

i:yi=0

log(1 −
1

1 + e−fθ(xi) )

Dθ(x) =
1

1 + e−fθ(x)

max
θ

ℒ(θ) = ∑
xi∼P(⋅)

log Dθ(xi) + ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

P( ⋅ )
Q( ⋅ )
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Adversarial training
• Suppose now that the spam detector (i.e. the discriminator) is fixed, 

then the spammer’s job is to generate spams that can fool the detector 
by making the likelihood of the spams being classified as spams small: 
 
 


• where 0 labelled examples are coming from the distribution , which 
is modeled by a deep neural network generative model, i.e. 

 where .

• The minimization can be solved by finding. The “best” generative model 

that can fool the discriminator 
 

min
Q(⋅)

ℒ(θ) = ∑
xi∼P(⋅)

log Dθ(xi)

does not depend on Q(⋅)

+ ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

Q( ⋅ )

xi = Gw(zi) zi ∼ N(0,Ik×k)

min
w

ℒ(w, θ) = ∑
xi∼P(⋅)

log Dθ(xi)

does not depend on Q(⋅)

+ ∑
xi∼Q(⋅)

log( 1 − Dθ( Gw(zi) ) )

30



Adversarial training
• Now we have a game between the spammer and the spam 

detector: 
 




• Where  is the distribution of real data (true emails), and 
 is the distribution of the generated data (spams) that we 

want to train with a deep generative model 
• jointly training the discriminator and the generator is called 

adversarial training

• Alternating method is used to find the solution

min
w

max
θ ∑

xi∼P(⋅)

log Dθ(xi) + ∑
zi∼N(0,I)

log(1 − Dθ(GW(zi)))

P( ⋅ )
Q( ⋅ )
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Alternating gradient descent for adversarial training

• Gradient update for the discriminator (for fixed w) 
         
          


• First sample  examples from real data (in the training set) and the 
generator data   
(for the current iterate of the generator weight )


• compute the gradient for those  samples using back-propagation


• Update the discriminator weight  by subtracting the gradient with a 
choice of a step size

max
θ ∑

xi∼P(⋅)

log Dθ(xi) + ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

n
xi ∼ Gw(zi)

w
2n
θ

32



Alternating gradient descent for adversarial training

• gradient update for the generator (for fixed ) 
 
     


• Consider the gradient update on a single sample 
 
      

for a single  sampled from a Gaussian

• The gradient update is 

 
    

         

 
with  
        

θ

min
w ∑

xi∼P(⋅)

log Dθ(xi) + ∑
zi∼N(0,I)

log(1 − Dθ(Gw(zi)))

min
w

ℒ(w, zi) = log(1 − Dθ(Gw(zi)))
zi ∼ N(0,I)

w = w − η∇w ℒ(w, zi)
= w − η ∇wGw(zi) ∇xDθ(x)

−1
1 − Dθ(x)

x = Gw(zi)
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This gives a new way to train a deep generative model
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Not only is GAN amazing in generating realistic samples
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http://whichfaceisreal.com



It opens new doors to exciting applications
• Cycle-GAN

36
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Style transfer with generative model
• If we have paired training data,


• And want to train a generative model G(x,z)=y, 


• This can be posed as a regression problem

39

x Y

z



How do we do style transfer without paired data? Cycle-GAN
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How do we do style transfer without paired data? Cycle-GAN

41

z

Adversarial training

Cycle loss

 

https://www.youtube.com/watch?v=PCBTZh41Ris


Super resolution
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https://www.youtube.com/watch?v=PCBTZh41Ris



The learned latent space is important
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z x

z[1]

z[2]
Gw( ⋅ )

Average of two face images  
in z-space ?

Average of two face images in x-space  
gives garbage



How do we check if we found the right manifold (of faces)?

• latent traversal

44



Can we make the relation between the latent 
space and the image space more meaningful?

45

• Disentangling 
• GANs learn arbitrary mapping from z to x 
• As the loss only depends on the marginal distribution of 

x and not the conditional distribution of x given z (how z 
is mapped to x)



Disentangling seeks meaningful mapping from  to z x

46
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Fully-supervised case
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c1 c2 c3

Train a conditional GAN, where 

 is a numerical representation of the labels 

given in the training data, and  is drawn from Gaussian
(c1, c2, c3)

z



However, some properties are hard to represent numerically
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Unsupervised training of Disentangled GAN
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Disentangled GAN training: InfoGAN-CR, 2019

• 1. As in standard GAN training, we want  to look 
like training data (which is achieved by adversarial loss 
provided by a discriminator)


• 2. We also want the controllable latent code  to be 
predictable from the image


• add a NN regressor that predicts , and train the 
generator that makes the prediction accuracy high 
(note that both this predictor and the generator works 
to make the prediction accurate, unlike adversarial 
loss)


• 3. We also want each code to control distinct properties 

• add a NN that predicts which code was changed 

    

Gw(z)

c

̂c(x)

51

c1

c2

c3
D(        ) = {real,fake}

minimize ∥ ̂c( ) − c∥2

̂i( ) ≃ i



Disentangling with contrastive regularizer
• To train a disentangled GAN, we use contrastive regularizer
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Discriminator  
encourages 
output  to be realisticx

Predictor makes sure that  
the changes in  make  
noticeable changes in 

c
x

̂c(X)

̂i(x1, x2)

Contrastive regularizer 
detects which latent code  
was the same in a paired 

ci
(x1, x2)



But is still challenging
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• Synthetic training data (with planted disentangled 
representation)

• Trained Disentangled GAN (latent traversal)



Challenges in training GANs
• GAN training suffers from mode collapse

• this refers to the phenomenon where the generated 

samples are not as diverse as the training samples

54



Mode collapse
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Training data

Trained generative model



Mode collapse
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Mode collapse
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Principled approach to mode collapse
• Lack of diversity is easier to detect if we see multiple samples

• Consider MNIST hand-written digits

• If we have a generator that generates 1,3,5,7 perfectly, it is hard to tell 

from a single sample that mode collapse has happened

• But easier to tell from a collection of, say, 5 samples all from wither 

training data or all from generated data

58



Principled approach to mode collapse
• Turning this intuition into a training algorithm:
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Principled approach to mode collapse: PacGAN, 2018

• Turning this intuition into a training algorithm:

60



Principled approach to mode collapse
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Principled approach to mode collapse
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Principled approach to mode collapse
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• Could PacGAN be cheating, as it is a larger discriminator 
network?



64

Principled approach to mode collapse
• Could PacGAN be cheating, as it is a larger discriminator 

network?
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Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each 

mini-batch?
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Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each 

mini-batch?
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Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each 

mini-batch?



Theoretical intuition behind PacGAN
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• Typical Gan training loss is

min
w

max
θ ∑

xi∼P(⋅)

log Dθ(xi) + ∑
zi∼N(0,I)

log(1 − Dθ(GW(zi)))

• We will consider 

min
w

max
θ ∑

xi∼P(⋅)

Dθ(xi) + ∑
zi∼N(0,I)

(1 − Dθ(GW(zi)))

subject to |Dθ(x) | ≤ 1 , for all x



Theoretical intuition behind PacGAN
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• We will consider 
min

w
max

θ ∑
xi∼P(⋅)

Dθ(xi) + ∑
zi∼N(0,I)

(1 − Dθ(GW(zi)))

subject to |Dθ(x) | ≤ 1 , for all x

• this is a finite sample approximation of the following expectation

min
w

max
θ

𝔼x∼P(⋅)[ Dθ(x) ]+ 𝔼z∼N(0,I)[ 1 − Dθ(GW(z)) ]
• let  denote the distribution of the generator Q( ⋅ ) Gw(zi)

min
Q(⋅)

max
θ

𝔼x∼P(⋅)[ Dθ(x) ]+ 𝔼x∼Q(⋅)[ 1 − Dθ(x) ]

• at this point, we can solve the maximization w.r.t.  assuming it can represent any functions 
(for the purpose of theoretical analysis)

• the optimal solution is 

Dθ

subject to |Dθ(x) | ≤ 1 , for all x

D✓(x) =

⇢
+1 if P (x) � Q(x)
�1 if P (x) < Q(x)

<latexit sha1_base64="ID79xGBJoQnvMgmt+Nz19kZ95y4="></latexit>



Theoretical intuition behind PacGAN
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min
Q(⋅)

max
θ

𝔼x∼P(⋅)[ Dθ(x) ]+ 𝔼x∼Q(⋅)[ 1 − Dθ(x) ]

• at this point, we can solve the maximization w.r.t.  assuming it can represent any functions 
(for the purpose of theoretical analysis)

• the optimal solution is 

Dθ

subject to |Dθ(x) | ≤ 1 , for all x

D✓(x) =

⇢
+1 if P (x) � Q(x)
�1 if P (x) < Q(x)

<latexit sha1_base64="ID79xGBJoQnvMgmt+Nz19kZ95y4="></latexit>

• Plugging this back in to the loss, we get

min
Q(⋅)

DTV(P, Q) = 𝔼x∼P(⋅)[ 1 −
Q(x)
P(x) ]

P(x)

Q(x)



Theoretical intuition behind PacGAN
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Theoretical intuition behind PacGAN
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Theoretical intuition behind PacGAN
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Deep Image prior
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• in standard de-noising/inpainting with trained GAN 
we want to recover original image from some distortion 

• if we have a GAN trained on similar class of images, then we can use the latent 
space and the manifold of natural images to recover the image as follows

z x

z[1]

z[2]

Gw( ⋅ )

Unknown  
original  
image

observed perturbed image



Deep Image prior
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• Given a trained generator  that knows the manifold of natural images,  
find the latent vector  that 
 
         


• let  be the recovered image

w
z

minimizez ℓ(Gw(z), )
Gw(z)

z x

z[1]

z[2]

Gw( ⋅ )

Unknown  
original  
image

observed perturbed image



Deep image prior
• deep image prior does amazing recovery, without training

76



Deep image prior
• fix  to be something random and find  that 

 
    
 
and let  be the recovered image

z w

minimizez ℓ(Gw(z), )
Gw(z)
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https://www.youtube.com/watch?v=kSLJriaOumA&feature=youtu.be


