
Neural Networks

Sewoong Oh

CSE446

University of Washington

Recall Multi-class logistic regression

2

• data: categorical in with categories

• model: linear vector-function makes a linear prediction

 
 

 
 
with model parameter matrix  
 

 

 
 

 

y {c1, …, ck} k

̂y ∈ ℝk

̂yi = f(xi) = wT xi

w ∈ ℝd×k

f(xi) =

f1(xi)
f2(xi)

⋮
fk(xi)

=

w1,0 + w1,1x[1] + w1,2x[2] + ⋯
w2,0 + w2,1x[1] + w2,2x[2] + ⋯

⋮
wk,0 + wk,1x[1] + wk,2x[2] + ⋯

w = [w[: ,1] w[: ,2] ⋯ w[: , k]]

• Logistic regression

3

2 classes k classes

Maximum Likelihood Estimator
<latexit sha1_base64="obyMf5CLUC8LFJMMYsPnTNbfIwI=">AAACBXicbVC7SgNBFJ31GeNr1VKLwSBYhd1YaBkUwUIhgnlAsoTZ2dlkyDyWmVkxLGls/BUbC0Vs/Qc7/8ZJsoUmHhg4nHPvnXtPmDCqjed9OwuLS8srq4W14vrG5ta2u7Pb0DJVmNSxZFK1QqQJo4LUDTWMtBJFEA8ZaYaDi7HfvCdKUynuzDAhAUc9QWOKkbFS1z24QQ+Upxxe04Ed0pcygpfaUI6MVF235JW9CeA88XNSAjlqXferE0mcciIMZkjrtu8lJsiQMhQzMip2Uk0ShAeoR9qWCsSJDrLJFSN4ZJUIxlLZJwycqL87MsS1HvLQVtrt+nrWG4v/ee3UxGdBRkWSGiLw9KM4ZdBIOI4ERlQRbNjQEoQVtbtC3EcKYWODK9oQ/NmT50mjUvZPypXbSql6nsdRAPvgEBwDH5yCKrgCNVAHGDyCZ/AK3pwn58V5dz6mpQtO3rMH/sD5/AGUm5if</latexit>

ℙ(yi = − 1 |xi) =
1

1 + ewT xi

ℙ(yi = + 1 |xi) =
1

1 + e−wT xi

maximizew∈ℝd
1
n

n

∑
i=1

log(1
1 + e−yiwT xi)

maximizew
1
n

n

∑
i=1

log(ℙ(yi |xi))

ℙ(yi = c1 |xi) =
ew[:,1]T xi

ew[:,1]T xi + ⋯ + ew[:,k]T xi

ℙ(yi = ck |xi) =
ew[:,k]T xi

ew[:,1]T xi + ⋯ + ew[:,k]T xi

⋮

maximizew∈ℝd×k

n

∑
i=1

k

∑
j=1

I{yi = j}log(ew[:,k]T xi

∑k
j′ =1 ew[:, j′]T xi

)

Neural Network
• for classification and regression, we studied linear models 

• without domain knowledge, typical machine learning starts out with a large

number of features, and use regularization to select a small number of
features that matter for the given data

• an alternative approach is to fix a number of features to be used in advance,
and learn the features adapted to the data

• most successful approach in this direction is  
Feed-forward Neural network also called  
Multilayer Perceptron (MLP)

• the term neural originates from an attempt to make a connection to
information processing in biological systems

fw(x) = w0 + w1h1(x) + w2h2(x) + ⋯ + wkhk(x)

k

4

+

-

-

-
-

-

-

-

+
+
+
+
+

+
+++++

+
+

+

+
+

++

+
xi[1]

xi[2]

Feed-forward neural network
• Feed-forward neural network is a multi-layer generalization of logistic regression
• recall logistic regression predict the probability that the label is +1 by 

 
 

 

where the sigmoid function is used:

•  

• instead of using predefined features ’s, we will replace them by parametric
functions and learn the features from data

• the idea is to recursively apply (a version of) logistic regression in multiple layers

P(y = + 1 |x) ≈ fw(x) = g(w0 + w1h1(x) + w2h2(x) + ⋯ + wkhk(x)

wTh(x)

)

g(a) =
1

1 + e−a

hj(x)

5

⋮
Computational graph h1(x)

hk(x)

w ∈ ℝk

w1

wk

g(wTh(x))

6

What can be represented by a linear classifier?

• x[1] x[2] y

• 0 0 0

• 0 1 1

• 1 0 1

• 1 1 1

x1 OR x2 x1 AND x2

x1

x2

1

y x1

x2

1

y

• x[1] x[2] y

• 0 0 0

• 0 1 0

• 1 0 0

• 1 1 1

W0

W1

W2

What cannot be learned?

What should be the weights?

Note that there is a one-to-one correspondence between  
a linear classifier and a neural network of the above form

6

• the first layer (i.e.) has input dimension, and the input data is

• and nodes or units,  
each node first computes input activations : 

 , for  

such that with weight  
where we ignored the constant term ’s (called bias) for notational convenience

• then outputs output activation : 
 for  
where can be a function of choice

ℓ = 1 d(0) = d x
d(1)

a(1)
k

a(1)
k =

d(0)

∑
j=1

w(1)
kj xj ∈ ℝ k ∈ {1,…, d(1)}

a(1) = W(1)x ∈ ℝd(1) W(1) ∈ ℝd(1)×d(0)

wk0

z(1)
k

z(1)
k = g(a(1)

k) k ∈ {1,…, d(1)}
g(⋅)

⋮
x[1]

x[d]

W(1) ∈ ℝd(1)×d(0)

Layer 1input output

z(1)
1 = g(a(1)

1) = g(w(1)
11 x[1] + w(1)

12 x[2] + ⋯)

z(1)
d(1) = g(a(1)

d(1)) = g(w(1)
d(1)1x[1] + w(1)

d(1)2x[2] + ⋯)}g(W(1)x)⋮

Feed-forward neural network
• using the convention that , each layer computes 

 ,  
where is entry-wise applied to a vector

• after -hidden layers, the output is the input activation at level :  

• if there are more than 1 output (for example in the multi class classification
problem), we compute a vector activation inputs of a dimension that we want

z(0) = x
z(ℓ) = g(W(ℓ)z(ℓ−1))
g(⋅)

L L + 1

̂y = fW(1) …,W(L+1)(x) = a(L+1) =
d(L)

∑
j=1

w(L+1)
j z(L)

j

8

⋮
x[1]

x[d]

W(1) ∈ ℝd(1)×d(0)

Layer 1input Layer 2

W(2) ∈ ℝd(2)×d(1)

Layer 3

W(3) ∈ ℝd(2)

̂y

L-th layer plays the role of features,  
but trained instead of predetermined

⋮ ⋮

output

9

XOR as a 2-layer neural network

v[1]

-0.5

1

-1
v[2]

-0.5

-1

1

x[1]

x[2]

1

y

1 -0.5

1

1

this is a special case with g(a) = a

10

Example of 2-layer neural network in action
1-layer neural networks
only represents linear classifiers

Example: 2-layer neural network trained to distinguish vowel sounds using 2
formants (features)

a highly non-linear decision boundary can be learned from 2-layer neural networks

Linear decision boundary

11

Representation power of a 2-layer neural network
• can such function be learned?

• if we are manually designing

functions, then 3 hidden (binary
values) nodes are enough.

• the reason is that there is some
simplicity or pattern in the data
that we want to represent:
although it is 8-dimensional,  
the data only has basis
vectors!

x ∈ {0,1}8

zk =
8

∑
j=1

w(1)
kj xj

yk = sign(
3

∑
j=1

w(2)
kj zj − 0.5)

12

Nonlinear activation function
• popular choices of activation function includes

13

Symmetry in the weights
• whichever non-linear activation function is used,  

the following symmetry gives equivalent weights with identical outputs

14

x ̂y

1.7

x ̂y0.3

-1.2 -3.1

0.9

-1.5 0.9

-1.5

-3.1

1.7

0.3

-1.2

• if ReLU activation is used, 
then and g(c x) = c g(x)

x ̂y
1

3 2

-2
x ̂y

-2

1 6

1

Training
• let denote all the weights of the neural network

• the empirical risk is defined the same way as  

 

• however, even for squared loss or logistic loss, the objective is no longer
a convex function

• still, we apply (stochastic) gradient descent

• back-propagation algorithm efficiently computes the gradient using the

computation graph

• we will focus on the example of squared loss 

 

  

 
but back-propagation works for any loss

W = (W(1), …, W(L+1))

ℒ(W) =
1
n

n

∑
i=1

ℓ(yi, fW(xi))

ℒ(W) =
1
n

n

∑
i=1

(yi − fW(xi))2

15

16

17

18

Back-propagation for computing gradient
• for a given model , we compute the gradient exactly as

follows

• we explain how to do it for a single input case, i.e.  

  
we can easily generalize it when there are data points in the training data

• Forward pass

• starting from a single input , go forward (from input to output layer),  
compute and store the variables

W(1), W(2), …, W(L+1)

ℓ(y, ̂y) = (y − fW(x))2

n

x
a(1), z(1), a(2), z(2), …, a(L), z(L), a(L+1)

19

⋮
x[1]

x[d]

̂y⋮ ⋮

a(1), z(1) a(2), z(2)
a(3) = ̂y

W(1) ∈ ℝd(1)×d(0)
W(2) ∈ ℝd(2)×d(1) W(3) ∈ ℝd(2)

Back-propagation for computing gradient
• Backward pass

•
we want to compute for all

• instead of writing the function explicitly, and writing the gradient explicitly, we will
use recursion

• we will do it backwards from output to input

• define

• if we have all ’s then we can  
compute all derivatives w.r.t ’s: 
 

  

 
which follows from  

 and

∇w(l)
kj

ℓ(y, fW(x)
⏟

̂y

) k, j, l

δ(l)
j ≜

∂ℓ(y, ̂y)
∂a(l)

j

δ(l)
j

w(l)
kj

∂ℓ(y, ̂y)
∂w(l)

kj
=

∂ℓ(y, ̂y)
∂a(l)

k

∂a(l)
k

∂w(l)
kj

= δ(l)
k z(l−1)

j

a(l)
k = ∑

j

w(l)
kj z(l−1)

j

∂a(l)
k

∂w(l)
kj

= z(l−1)
j

20

(a)

⋮

x[1]

x[d]

̂y⋮ ⋮

a(1), z(1) a(2), z(2)

a(3) = ̂y

W(1) ∈ ℝd(1)×d(0)
W(2) ∈ ℝd(2)×d(1) W(3) ∈ ℝd(2)

Back-propagation for computing gradient
• we can now recursively compute all ’s and hence all derivatives ’s

• starting from the output layer where  
 

  
 
as , and there is no subscript as is a scalar

• we apply (a) to get the output layer derivatives 
 

δ(l)
j ∇w(l)

kj
ℓ(y, ̂y)

̂y = a(L+1)

δ(L+1) ≜
∂ℓ(y, ̂y)
∂a(L+1)

= 2(aL+1) − y) = 2(̂y − y)

ℓ(y, ̂y) = (y − ̂y)2 k δ(L+1)

∂ℓ(y, ̂y)
∂w(L+1)

j
= δ(L+1)z(L)

j = 2(̂y − y) z(L)
j

21

Precomputed from froward pass

• now we can recursively compute ’s using ’sδ(l)
j δ(l+1)

k

22

⋮
x[1]

x[d]

̂y⋮ ⋮

{δ(1)
j } {δ(2)

j }
δ(3)

W(1) ∈ ℝd(0)×d(1)
W(2) ∈ ℝd(1)×d(2) W(3) ∈ ℝd(2)

• It follows from the computation graph that  
 depends on the loss only through ’sδ(1)

j ℓ(y, ̂y) δ(l+1)
j

• using the chain rule,  
 

  

 

  

 

• to finish the recursion, we need to compute the second term in the summand 
 

  

which implies 
 

• substituting it back in (b), we get  
 

δ(l)
j ≜

∂ℓ(y, ̂y)
∂a(l)

j

=
d(l+1)

∑
k=1

∂ℓ(y, ̂y)
∂a(l+1)

k

∂a(l+1)
k

∂a(l)
j

=
dl+1)

∑
k=1

δ(l+1)
k

∂a(l+1)
k

∂a(l)
j

a(l+1)
k =

d(l)

∑
c=1

w(l+1)
kc z(l)

c =
d(l)

∑
c=1

w(l+1)
kc g(a(l)

c)

∂a(l+1)
k

∂a(l)
j

= w(l+1)
kj g′ (a(l)

j)

δ(l)
j = g′ (a(l)

j)
d(l+1)

∑
k=1

w(l+1)
kj δ(l+1)

k

23

⋮ ⋮

{δ(1)
j } {δ(2)

j }

W(2) ∈ ℝd(1)×d(2)

(b)

Back-propagation for computing ∇W(y − fW(x))2

• Forward pass:

• compute

• Backward pass:

• initialize:  
 

• recursively compute:  
 

  

and the derivatives 
 

a(1), z(1), a(2), ⋯, a(L), z(L), a(L+1) = ̂y

δ(L+1) = 2(̂y − y)

∂ℓ(y, ̂y)
∂w(L+1)

j
= 2(̂y − y) z(L)

j

δ(l)
j = g′ (a(l)

j)
d(l+1)

∑
k=1

w(l+1)
kj δ(l+1)

k

∂ℓ(y, ̂y)
∂w(l)

kj
= δ(l)

k z(l−1)
j

24

⋮
x[1]

x[d]

̂y⋮ ⋮

{δ(1)
j } {δ(2)

j }
δ(3)

W(1) ∈ ℝd(1)×d(0)
W(2) ∈ ℝd(2)×d(1) W(3) ∈ ℝd(2)

Time complexity of evaluating the function value

• suppose addition, subtraction, multiplication, division, and
evaluating of scalars take “one unit” of time

• the time complexity to compute is  
 

g(⋅)
̂y = fW(x)

2 × d(0) × d(1)

a(1)=W(1)x

+ d(1)
⏟

z(1)=g(a(1))

+ 2 × d(1) × d(2) + d(2) + ⋯ + 2 × d(L)

̂y=W(L+1)z(L)

25

⋮
x[1]

x[d]

̂y⋮ ⋮

z(1) = g(W(1)x)
z(2) = g(W(2)z(1))

W(1) ∈ ℝd(1)×d(0)
W(2) ∈ ℝd(2)×d(1) W(3) ∈ ℝd(2)

Time-complexity of evaluating the gradient
• suppose can be evaluated in time similar to (say five

unit time) 

• using back-propagation algorithm, the total time to compute both
 and is within a constant factor (e.g. a

factor of five) of the time required to compute just  
 

g′ (⋅) g(⋅)

ℓ(y, fW(x)) ∇Wℓ(y, fW(x))
ℓ(y, fW(x))

2
⏟

δ(L+1)=2(aL+1)−y)

+ d(L)
⏟

∂ℓ(y, ̂t)
∂w(L) =δ(L+1)z(L)

+ d(L−1) × (2d(L) + 1)

δ(L−1)
j =g′ (a(L−1)

j)(W(L)
j)Tδ(L)

+ ⋯

26

⋮
x[1]

x[d]

̂y⋮ ⋮

{δ(1)
j } {δ(2)

j }
δ(3)

W(1) ∈ ℝd(1)×d(0)
W(2) ∈ ℝd(2)×d(1) W(3) ∈ ℝd(2)

Why is back-propagation so fast?

• evaluating a single derivative takes as much time as

computing

• back-propagation simultaneously computes all of them

• this result that evaluating the gradient takes a similar amount of time as
just evaluating the function is known as Baur-Strassen theorem from

• Walter Baur and Volker Strassen. “The complexity of partial

derivatives.”, 1983.

• Andreas Griewank and Andrea Walther. “Evaluating Derivatives:

Principles and Techniques of Algorithmic Differentiation.”, 2008.

∂ℓ(y, fW(x))
∂W(l)

kj
ℓ(y, fW(x))

27

Example: classification
• Logistic loss

• 2-hidden layers ()

• sigmoid activation

• Weights (including the bias terms for each of the 7 nodes)

ℓ(y, ̂y) = log(1 + ey ̂y)
L = 2

g(a) =
1

1 + e−a

W ∈ ℝ25

28

̂y

x[1]

x[2]

z(1)
1

z (1)
2

z (1)
3

z(1)
4

z(2)
1

z (2)
2

29

̂y

x[1]

x[2]

z(1)
1

z (1)
2

z (1)
3

z(1)
4

z(2)
1

z (2)
2

z(1)
1

z (1)
2

z (1)
3

z(1)
4

z(2)
1

z (2)
2

̂y

30

z (1)
2 z (1)

2

x[2]
x[1]

31

̂y ̂y

x[2]x[1]

Optimization on non-convex function
• to train a neural network, we use back-propagation to compute 

• however, gradient descent (or stochastic gradient descent) does not
converge to global minima

• we should not expect any efficient algorithm to find the global minima

• instead, gradient descent stops moving when gradient is zero (or small,

in practice)

• in practice converging to local minima is inevitable, but one should avoid

stopping at saddle points (points with gradient zero but are not local
minima or maxima) if possible

W ← W − η
n

∑
i=1

∇Wℓ(yi, fW(xi))

32

Empirical risk

W

local  
minima

saddle  
point

global  
minima

Training feed-forward neural networks
• initialization

• for convex optimization, we can initialize with , and GD will find the
optimal solution

• for feed-forward neural network, we should not initialize with as it is a
saddle point (the iterate never moves)

• initializing with small is bad, as initial gradient is small, and takes long time
for the empirical risk to decrease

• initializing with large can also be bad, as we show next

• how do we choose the right initialization?

• Xavier initialization: initialize s.t. each has unit variance over the
training examples ’s

W = 0

W = 0

W

W

a(l)
j

xi33

• back-propagation

• recursively compute:  

 

  

and the derivatives 
 

δ(l)
j = g′ (a(l)

j)
d(l+1)

∑
k=1

w(l+1)
kj δ(l+1)

k

∂ℓ(y, ̂y)
∂w(l)

kj
= δ(l)

k z(l−1)
j

Training feed-forward neural networks
• Saturation/vanishing gradients
• this applies to sigmoid or tanh activation functions

• when ’s have large magnitude (either because of large
initialization, large learning rates, etc.)

• when using sigmoid or tanh, one should be careful about vanishing
gradients

a(l)
j

34

sigmoid g(a) =
1

1 − e−a
tanh g(a) =

ea − e−a

ea + e−a

35

Auto-differentiation
• the ability to automatically differentiate functions has become a core ML

tool

• a breakthrough mathematical result behind the success is that all

derivatives can be computed in time similar to the runtime of evaluating
the function itself

• Understanding auto-differentiation allows us to better understand how
software like PyTorch and TensorFlow work, and hence better utilize
those tools to get the desired result (in training ML models)

• back-propagation is a special case of auto-differentiation

36

Auto-differentiation
• Computational model
• for a real valued function , we seek to

compute the gradient

• we first need to specify the function

• suppose

• here is a program that computes

• input:

• output:

f(W) : ℝd* → ℝ
∇W f(W)

f(W)

f(w1, w2) = (sin(2πw1/w2) + 3w1/w2 − exp(2w2)) × (3w1/w2 − exp(2w2))
f(w1, w2)

z0 = (w1, w2)

z6 = z4 × z5
37

z0[1]

zo[2]

The program can be translated into  
a computation graph

Auto-differentiation
• Computational model
• for a real valued function , we seek to

compute the gradient

• we first need to specify the function

• suppose

• here is a program that computes

• input:

•

•

•

•

•

• output:

f(W) : ℝd* → ℝ
∇W f(W)

f(W)

f(w1, w2) = (sin(2πw1/w2) + 3w1/w2 − exp(2w2)) × (3w1/w2 − exp(2w2))
f(w1, w2)

z0 = (w1, w2)
z1 = w1/w2
z2 = sin(2πz1)
z3 = exp(2w2)
z4 = 3z1 − z3
z5 = z2 + z4

z6 = z4 × z538

z0[1]

zo[2]

z1

z3

z2

z4 z5 z6

The program can be translated into  
a computation graph

Auto-differentiation
• such a program is called an evaluation trace
• we give an abstract definition of evaluation trace

• we define a set of differentiable functions

• we use functions from for intermediate variables, and create an
evaluation trace

• all intermediate variables will be scalars

• each variable is a node in computational graph

• only the input is a vector, which is represented by
nodes:

• input:

•  

•  

• output:

h ∈ ℋ
ℋ

z1, …, zt

z0 = w ∈ ℝd d
z0[1] = w1, …, z0[d] = wd

z0 = w
z1 = h1(a fixed subset of parent variables in z0)
⋮
zt = ht(a fixed subset of parent variables in z0:t−1)
⋮

zT = hT(a fixed subset of parent variabels in z0:T−1)39

Auto-differentiation
• we will assume that only contains

• 1. affine transformation, e.g.

• 2. product of variables, or some power of variables, e.g.

• 3. one-dimensional differentiable function, e.g.

• note that we only allow one-dimensional input, i.e.

 is not allowed

• the computation graph we studied for feed-forward neural networks  
is not a special case of the above model, as

• the parameter we want to take gradient with respect to, is not at
the input

• and is not permitted, as it is not a one-dimensional

function

ℋ
z4 = 3z1 − z3

z1 = w1/w2
z3 = exp(2w2)

z3 = exp(z1 + z2)

W

h(∑
j

w(l)
kj z(l−1)

j)

40

Auto-differentiation
• auto-differentiation uses the chain rule to differentiate a function

represented by its evaluation trace and compute

• the insight is that affects target only through its children nodes

• we work backwards

•

• we use the chain rule:  
 

  

 
where a child node is a node that directly points to

∇w f(w)
zt

∂zT

∂zT
= 1

∂zT

∂zt
= ∑

c∈children of zt

∂zT

∂zc

∂zc

∂zt

zt

41

42

f(w1, w2) = (sin(2πw1/w2) + 3w1/w2 − exp(2w2)) × (3w1/w2 − exp(2w2))

z0[1]

zo[2]

z1

z3

z2

z4 z5 z6

The program can be translated into  
a computation graph•

•

•

•

•

• output:

z1 = w1/w2
z2 = sin(2πz1)
z3 = exp(2w2)
z4 = 3z1 − z3
z5 = z2 + z4

z6 = z4 × z5

Auto-differentiation
• the reverse mode of auto-differentiation
• forward pass

• compute and store all intermediate variables

• backward pass

• initialize:

• for

•

• return:

f(w)

∂zT

∂zT
= 1

t = T − 1,…,0
∂zT

∂zt
= ∑

c∈children of zt

∂zT

∂zc

∂zc

∂zt

∂zT

∂z0
= ∇w f(w)

43

Over-fitting and regularization in neural networks

44

45Drop out encourages all nodes to contribute equally, as nodes are randomly unavailable

46

47

Convolutional Neural Networks

48

Invariances
• in many applications, we know that the prediction should be unchanged or

invariant when the input is transformed in certain ways

• for example, in image classification, the prediction should be invariant to

• changing position (translation invariance),

• changing its size (scale invariance), or

• small rotations (rotation invariance)

• for speech, faster or slower time scale should not change the meaning

• however, these invariant transforms significantly change the raw data, making
it challenging to train an invariant model

• one solution is data augmentation, which is including many invariant
transformed versions of the training data

• this often times is impractical due to the increase in training data, and training
time49

Convolutional networks
• in a specific but popular example of image classification, 

we want to design neural network architectures that captures the
invariances that we want to impose (translation, small rotation, scale)

• also, a key aspect of image data is that close-by pixels are likely to be
more related than distant pixels (locality)

• convolutional neural networks exploit this property by first extracting
local features and merge those local features in later stages when
constructing higher order features

• recall that a fully connected layer of feed-forward neural network  
extracts linear features and applies a non-linear activation

50

⋮ ⋮

W(1) ∈ ℝd(1)×d(0)

a(1) = W(1)x

Example: 1-d convolution
• convolutional layer extracts the same local features,  

but for many locations of the input

51

w ∈ ℝk

x ∈ ℝd a ∈ ℝd−(k−1)
a = w ⋆ x

ai =
k

∑
j=1

wjxi+j−1

Filter

1
2
0
-1
1
0

1
0
-1

Convolution operation

Input x Filter w Output a

Applies the same filter through  
a sliding window on the input

- reduces number of parameters

- captures locality

- imposes translation invariance

2-d convolution
• consider an image and a filter x ∈ ℝd×d w ∈ ℝk×k

52

a = w ⋆ x

ai1,i2 =
k

∑
j1,j2=1

wj1,j2xi1+j1−1,i2+j2−1

Convolution operation
Input x Filter w

Output a

Role of the filter

53

Input x

Filter w Output a

[
−1 0 1
−1 0 1
−1 0 1]

[
−1 −1 −1
0 0 0
1 1 1]

3-d convolution (single filter case)
• input , filter , output x ∈ ℝd×d×3 w ∈ ℝk×k×3 a ∈ ℝ(d−(k−1))×(d−(k−1))

54

a = w ⋆ x
Convolution operation

ai1,i2 =
3

∑
c=1

k

∑
j1,j2=1

wj1,j2,cxi1+j1−1,i2+j2−1,c

3-d convolution (one convolutional layer)
• input , filters , output x ∈ ℝd×d×3 M wm ∈ ℝk×k×3 a ∈ ℝ(d−(k−1))×(d−(k−1))

55

- M convolutions are computed

- this is still a linear operation

- we apply a non-linear activation at the output

56

x ∈ ℝd×d×3
Input

 filters 5 × 5 wm

Pooling (locally summarizing the convolved features)

57

- other functionals include, max pooling, average pooling, and L2-norm pooling

- it should be a function independent of the input permutation  

(to impose shift invariance)

58

Why pooling?
- if we used pooling with a larger stride, then the output feature is  
(almost) invariant to small shifts

A single convolutional + pooling layer as feature extraction

Hidden convolutional layers learn patterns of increasing complexity

59

60

Deep neural networks learns non-linear features

Convolutional neural network (LeNet 1990’s)

• A convolutional neural network consists of multiple
convolution, pooling, and fully connected layers

61

62

63

64

65

Why are convolutional neural networks so successful?

• Convolutional neural network imposes translation invariance  
(via pooling and weight sharing) 

• and significantly reduces the number of parameters  
(by weight sharing)

• Structured sparse connections capture locality of images

• these are main reasons for the success of deep learning for
computer vision

• which is central to the popularity of deep learning

66

• Feed-forward neural network would not scale to images

• CIFAR-10 images are only 32*32*3 and a single neuron at

the first layer will have 32*32*3 = 3072 weights

• this gets worse for practical size images

• Convolution allows us to extract many relevant features,

with small number of parameters

67 demo: https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

