Neural Networks

Sewoong Oh

CSE446
University of Washington

Recall Multi-class logistic regression

 data: categorical y inz 1C1s .-

: c,j/vith k categories

e model: linear vector-function makes a linear prediction

P e RX

e

j\’i = flx;) = WTxi éﬁ/

K

with model parameter matrix w & R

oy

f(xi) — f2(xz)

)

w = [W[I 1 wl: 2]

Ws 0 + Wy 1X

_Wk,o + wk,lx[l] + wk,zx[Z] + .-

- wl: ,k]]

Wi+ wl,lxilz

-—]—1
- —

+ wy ox[2]

+ wy o x[2]

(X i=¢ = qé]}
| b
C)_‘-l ‘—?/l
A
4 e
+ .. _

e Logistic regression

2 classes k classes
ew[:,l]Txl-
ﬂj) . = — 1 X:) = - L) —
(yl | l) 1 + ewai I]:D(yl Cl |'xl) eW[i,l]TX,- + . + eW[i,k]Txi
PQ;=+1[x) = -
l l 1 + e ew[:,k]Txl-
P(y, = Cklxi) =

el Ty oo 4 pwlhkl T,

Maximum Likelihood Estimator

. 1
maximize,, — Z log(P(y;]x,)
it

n wl:k] x;

| 1 k
maximize — Y lo () Maximize,, cpax Hy,=Jj }log<

—voT
Yiw= X;

=1 i=1 j=1 =1

Y ey,

)

4

Neural Network

e for classification and regression, we studied linear models
f,(0 = wy +wih(x) + wyhy(x) + -+ + wh(x)
e without domain knowledge, typical machine learning starts out with a large

number k of features, and use regularization to select a small number of
features that matter for the given data

X'k[z]

++

e an alternative approach is to fix a

number of features to be used in advance,

and learn the features adapted to the data

e most successful approach in this direction is
Feed-forward Neural network also called

Multilayer Perceptron (MLP)

* the term neural originates from an attempt to make a connection to
iInformation processing in biological systems

Feed-forward neural network

 Feed-forward neural network is a multi-layer generalization of logistic regression
* recall logistic regression predict the probability that the label is +1 by

Ply=+1[x) =~ f,(x) = glwy+ wih(x) + wyhy(x) + --- + wly(x))

wT;z(x)
1
l +e

where the sigmoid function is used: g(a) =

Wi

K 2 hk(x)

o instead of using predefined features hj(x)’s, we will replace them by parametric
functions and learn the features from data

- the idea is to recursively apply (a version of) logistic regression in multiple layers

What can be represented by a linear classifier?

* x[1] x[2] y
0 O O
e 0O 1 O
1 0 O
) 1 1 1
5O
What should be ;h;c\év]eights? L’ f.,\/ (X, Xt2]) :G\’ W X4 W K]

~ - KT(]

V

Note that there is a one-to-one correspondence between
a linear classifier and a neural network of the above form

s What cannot be learned?

e the first layer (i.e. Z = 1) has d"¥ = d input dimension, and the input data is x

« and d" nodes or units,

each node first computes input activations algl):
4O

a® = Yy eR, fork € {1,...,d"}

n . (D 7(0)
such that) = W{l)x e R?" with weight W) € RY >
where we ignored the constant term w,,’s (called bias) for notational convenience

o then outputs output activation zlgl):
(1) = g((1)) fork € {1,...,d"V}
where g(-) can be a function of choice

input Layer 1 output
W(l) c Rd(l)xd(o)

(1) — (Dy — (1) (1)
() " = g@) = gowDx{ 1]+ wx{2] + -+
®

x[1]

g(W(l)x]

(D) = (1y — (1) (1)
(1) g(a (1)) g(W (1)136[1:| + W (1)2X[2] + -)

x[d]

Feed-forward neural network

e using the convention that 70 = X, each layer computes
-0 = g(W@ =1)
where g(-) is entry-wise applied to a vector

o after L-hidden layers, the output is the inpu(tL)activation at level L + 1:
d

y = fW(l)__.,W(L+1)(X) = gt = ZW}(L_H)Z]'(L)

J=1
e if there are more than 1 output (for example in the multi class classification
problem), we compute a vector activation inputs of a dimension that we want

input Layer 1 Layer 2 Layer 3 output

WD g RI*dY W@ g gd?xd" Wi g gd®
x[1]

«!

x[d]

L-th layer plays the role of features,
but trained instead of predetermined

XOR as a 2-layer neural network

L -0.5

© S Yy

ON «2] v[2]

this is a special case with g(a) = a

10

Example of 2-layer neural network in action

Linear decision boundary
|

1-layer neural networks
only represents linear classifiers

Example: 2-layer neural network trained to distinguish vowel sounds using 2
formants (features)

a highly non-linear decision boundary can be learned from 2-layer neural networks

a head
ahid

+ hod

* had

¢ hawed
1 +» heard
0 heed

Output
head hid layer 4 who’d hood

< hud
3 whe'd
~ hoed

* 0 500 1000 1400

Representation power of a 2-layer neural network

A target function: Iléwﬁ‘ﬁyf e can such function be learned?

/ Innnfx <) Outbut . : :
= L] 1 e |f we are manually designin
o—°"" 2 110000000 2| 10000000 y gning

60— 00 Too0 000 4 01000000 functions, then 3 hidden (binary
O’—TO 00100000 44 00100000 values) nod.es are enough.
€ 00010000 22° 00010000 e the reason is that there is some
) 00001000 “¢9 00001000 simplicity or pattern in the data
o 00000100 — 00000100 that we want to represent:
" 00000010 — 00000010 although it is 8-dimensional,
00000001 — 00000001 the data only has basis
Inputs lﬁla') Outputs 3 VeCtorS!(W
- - O ~ . _
Oy, = sign(Z wz.—05) [(¢ [
/ = ki ~J /0 éé‘t .e/
9 N
0 Y —
O o
x € {0,1}° 0 <
o >
0 0

11

A network:

Learned hidden layer representation:

Input Hidden Output
s Valges o

10000000 — .89 .04 .g{s — 10000000
01000000 — A 1 €& — 01000000
00100000 — .6 gj £ 00100000
00010000 — .99 .47 % — 00010000
00001000 — .68 .& .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

13

Nonlinear activation function J¢2*K—K

 popular choices of activation function includes

o(z) = ey max(0.1z, x)
—X :
tanh ete Maxout
tanh(:z:) S X" N max(u/{x + b1, 11)2T.’I; + b9)
ReLU ELU
max(O, CU) 4 v 20
- . ae®—1) <0 - P 1o

fwﬁ)il\\//"l‘\’/\,/‘/x\/\g)(o (UX>>

Symmetry in the weights iy 90

e whichever non-linear activation functiornis-dsed,
the following symmetry giveés equivalent weights with identical outputs

L/

-1.5

10 S O gy

-1.2 0 -3.1
e if ReLU activation is used, ReLU
then g(c x) = ¢ g(x) and max (0, x)
-2 O\
O< Oy O—_ ;

1.7

15

Training

et W = (W, .. WD) denote all the weights of the neural network
the empirical risk is defined the same way as

1 n
FW) = — D £0p f(x)
=1

however, even for squared loss or logistic loss, the objective is no longer
a convex function

still, we apply (stochastic) gradient descent

back-propagation algorithm efficiently computes the gradient using the
computation graph

we will focus on the example of squared loss \71/\;?{ jwﬁ(r) \
1 & %) \
PW) = — — fox))?
W) = - i§=1j, (v; = Fw (@) f i)

| - %w%)
but back-propagation works for any loss (ﬁ("ﬁ%& A e]

16

W, (2) - o 2
D(O/ @—%D ?\h[:w(u "J(.Z] Wo»cy,/g\) - KOL—-?)
Yoz L oy,
v % - 0y & — ?
- dWO T
KNS
FéYwar} o\ \L;jc‘\))C \ »
PAsS RN l-x) / Q:],J()a\,Ca(),,r_ NC:) C-&\)_,)
~ %2 a' CA) 7 f(w = i J
LZLd ‘ 6»(_0\7,))) j'l W/ L+ N‘L) gl
; oLy 7 ,
B aeussvod (2) CQL/) A K 22/ L 3
ol' Z I;toqméa o /«) :'2_(19_;0[2(|
P S
THG Q) L) T
— g(\): (LY ~ Q(J,EI_ X) : __i
9 0\(N }9 ?lt(. ~2(9,;[) FLJ (17 8,(0\(>
}Q(X,S') | Wi" ga,_)
L. o4, | . a/ !

17

18

19

Back-propagation for computing gradient

e for a given model wh W WD e compute the gradient exactly as

follows

e we explain how to do it for a single input case, i.e.

£(n,3) = (y — f(x))*

we can easily generalize it when there are n data points in the training data

e Forward pass

e starting from a single input x, go forward (from input to output layer),
compute and store the variables a''), z(1, a® &), ... a®) D) qL+D

W(l) c Rd(”xd(‘)) W(Z) c Rd(z)xd(l) W(3) = Rd(z)

x[1]

x[d]

20

Back-propagation for computing gradient

Backward pass
we want to compute legz)f (v, fw(x)) forallk,j,!
J

A

y
e instead of writing the function explicitly, and writing the gradient explicitly, we will
use recursion

e we will do it backwards from output to input

define s & 070, 7)
° J Oa(l)

o if we have all 5(1)’3 then we can

x[1]

compute all derlvatlves w.r.t w]g)’ e 0,50 a0
o4 (.9) _ 06,9 94’
(a) = = 0,7
0w(l) da,ﬁl) 0w(l) kJ
which follows from
aa(l)
(l) _ Z W(l) (=1) and Z(l—l)
aw(l) J

21

Back-propagation for computing gradient

e We can now recursively compute all 6].(1)’3 and hence all derivatives legz)f (y,9)’s
J

e starting from the output layer where y = qLtD

0r (y,y))
sA+D | A D 2(a™t —y) =23 - y)

as £(y,9) = (y — $)?, and there is no subscript k as s is a scalar

e we apply (a) to get the output layer derivatives

oy, y) | _ sLHD,L) — 2
aWj(L+1) J

G-z

Precomputed from froward pass

22

e NOW we can recursively compute 5j(l)’s using 515”1)’5

W(l) = Rd(mxd(l) W(Z) = Rd(l)xd@ W(3) cER

x[1]
O~
1| =0
-0 50
xld] (50 {5j<2>}
J

e |t follows from the computation graph that

5].(1) depends on the loss £(y, y) only through 5].(1“)’3

Fe)

<>

23

using the chain rule,

5O A or(y,y)

T a0

(l+1)

2 of(y,) 9a;""

aa(l+l) aa(l)
J

k=1
d aa,§l+” {6
_ (I+1) .
(b) B 25k () /
k=1 aa;
to finish the recursion, we need to compute the second term in the summand
4D 4D
(+1) _ I+, () — (I+1) (I
ak o Z kc <c Z g((l)
which implies =l =1
aa(l+l)
_ w(l+1)g (a(l))
aaj(l)

substituting it back in (b), we get

d(l+1)

) — (D (I+1) g(+1)
5 = g (a) Z Wy, 5k

Back-propagation for computing V (y — fiw(x))

e Forward pass:

« compute all,z(0,a®, ... aD D) qE+D) =5

e Backward pass:

24

e initialize: 5D = 2(5 —y)

irQ.9) _ 265 — y) 2@
(L+1) 7
dwj
e recursively compute:
d(l+1)
0 _ r¢ (1) (I+1) g(l+1)
5 = £ 3w
and the derivatives k=1
[k ~j
aw,§j>

W(l) c Rd(l)Xd(o) W(z) c Rd(z)Xd(l) W(3) c IRd(Z)

x[1]

x[d]

Time complexity of evaluating the function value

e suppose addition, subtraction, multiplication, division, and
evaluating g(-) of scalars take “one unit” of time

e the time complexity to compute ¥ = fiy(x) is

2xdYVxdV+ 4V +2xdVxd®+d?+ ... + 2xdP

aW=Wy zM=g(aD) H=WLHD (D)

[d] {@ = g(WO)

{0 = g(Why)

25

Time-complexity of evaluating the gradient

e suppose g'(-) can be evaluated in time similar to g(-) (say five
unit time)

* using back-propagation algorithm, the total time to compute both
Z(y, fw(x)) and Vw?(y, fw(x)) is within a constant factor (e.g. a

factor of five) of the time required to compute just £(y, fiy(x))

2 + dP 4+ dEDx2dP+1) + -

Ny e’ ‘,—/

L+ (qaL+tD_ 0C(y, 1) __ o(L+1)(L) -D— (1 INT (L
o (a y) m_g 7 5]§)_g (aj())(W]()) SL)

W(z) c Rd(Z)Xd(l) W(3) c Ra’@)

w e gdxd?

26

<>

27

Why is back-propagation so fast?
0r(y, fw(x))

evaluating a single derivative takes as much time as

computing (. fy())

* back-propagation simultaneously computes all of them

e this result that evaluating the gradient takes a similar amount of time as
just evaluating the function is known as Baur-Strassen theorem from

e \Walter Baur and Volker Strassen. “The complexity of partial
derivatives.”, 1983.

* Andreas Griewank and Andrea Walther. “Evaluating Derivatives:
Principles and Techniques of Algorithmic Differentiation.”, 2008.

Example: classification

e Logistic loss Z(y,) = log(1 + &%)

e 2-hidden layers (L = 2)
1

l +e@
e Weights W & R2 (including the bias terms for each of the 7 nodes)

. Sigmoid activation g(a) =

@ = 6,63
063 1| - . _ 0 .37 Xc1]
[089 } i to.6¢xC2]

S _ 1.6 |
L] 1

3.5 ‘ 2 . 3 —0.81 : . B
—4.5 | LR ash ~3.5 | 3Bk

1.8 |
.::0 ® r o' 2 * 3 | ﬂ.. ® ; -

| | k - _1.6 1 | k
—4.4 " , Nl % —0.18 | \ p % 3
P ° o g PO ° N
_2'9 0 -' - 5-4) .' o
B wr
—2.5 B N 1 —5.6 | A 2 '

30

31

Optimization on non-convex function

e to train a neural networlll<, we use back-propagation to compute

W« W5 V(v fywx))

i=1
* however, gradient descent (or stochastic gradient descent) does not
converge to global minima

e we should not expect any efficient algorithm to find the global minima

* instead, gradient descent stops moving when gradient is zero (or small,
in practice)

e |n practice converging to local minima is inevitable, but one should avoid
stopping at saddle points (points with gradient zero but are not local
minima or maxima) if possible

Empirical risk

local / saddle

minima point

global
minima

a2 . W

33

Training feed-forward neural networks

e jinitialization

for convex optimization, we can initialize with W = 0, and GD will find the
optimal solution

for feed-forward neural network, we should not initialize with W = 0 as it is a
saddle point (the iterate never moves)

* back-propagation
* recursively compute:
40D

5(1) _ g/(a(l)) Z W(l+l)5(l+1)

and the derivatives

af(y y) _ 5(1) (l 1)
aw,g)

initializing with small W is bad, as initial gradient is small, and takes long time
for the empirical risk to decrease

initializing with large W can also be bad, as we show next
how do we choose the right initialization?

o Xavier initialization: initialize s.t. each aj(l) has unit variance over the

training examples X;’s

34

Training feed-forward neural networks

e Saturation/vanishing gradients

sigmoid g(a) =

this applies to sigmoid or tanh activation functions

when aj(l)’s have large magnitude (either because of large
initialization, large learning rates, etc.)

when using sigmoid or tanh, one should be careful about vanishing
gradients

] —e @

14 1

0.8+ 0.54
0.6+

oA

0.2+

35

36

Auto-differentiation

e the ability to automatically differentiate functions has become a core ML
tool

e a breakthrough mathematical result behind the success is that all
derivatives can be computed in time similar to the runtime of evaluating
the function itself

* Understanding auto-differentiation allows us to better understand how
software like PyTorch and TensorFlow work, and hence better utilize
those tools to get the desired result (in training ML models)

* back-propagation is a special case of auto-differentiation

37

Auto-differentiation

e Computational model

e for a real valued function (W) : R — R, we seek to
compute the gradient Vyy f(W)

« we first need to specify the function f(W)
e suppose S N,

fw,wy) = (%in(Zﬂwll wy) | 3w /wy — exp(2w,)) X Bw/w, — exp(2wy))
e hereisa proérém that corﬁputes fw, w,)

e input: 7, = (Wp Wz) The program can be translated into
a computation graph

E‘ = Wl Zo[1] @»—?

ZL: §TV\C7_:((Z|> y '

Ky = 5”17{2“’)-) Zol2] @ ;@ @ -
L4 = 3Z—21%

‘Z's = g?«% 52+
e output: 7, = 74 X Z5

38

Auto-differentiation

e Computational model

for a real valued function f(W) : R*" — R, we seek to
compute the gradient Vy f(W)

we first need to specify the function f(W)

suppose
fw,wy) = (SInQRaw/w,) + 3w /w, — exp(2w,)) X Bw,/w, — exp(2w,))

here is a program that computes f(w;, w,)

e nput: 20 = (Wl, Wz) The program can be translated into
a computation graph

* U = Wl/WZ zol1] O_> @

¢ 7, = sin(2nz;)

o 73 = exp(2w,) 2] ‘ @_, @ @
¢ 74, =371 — 3

e Is=2+Y

e output: 7, = 74 X Z;5

39

Auto-differentiation

* such a program is called an evaluation trace
e We give an abstract definition of evaluation trace

we define a set of differentiable functions h € #

we use functions from # for intermediate variables, and create an
evaluation trace

all intermediate variables z;, ..., Z, will be scalars

each variable is a node in computational graph

only the input z, = w € R%is a vector, which is represented by d
nodes: 7p[1] = wy, ..., zold] = w,

input: 2, = w

z; = hy(a fixed subset of parent variables in z)
z, = h(a fixed subset of parent variables in z,.,_;)

output: z; = /1(a fixed subset of parent variabels in zy.7_;)

40

Auto-differentiation

e we will assume that # only contains ;
1. affine transformation, e.g. 7, = 3z, — 73 %=X &2
e 2. product of variables, or some power of variables, e.g. z; = w;/w;,

3. one-dimensional differentiable function, e.g. z; = exp(2w,)

* note that we only allow one-dimensional input, i.e.
73 = exp(z; + z) is not allowed B2 R Ry
B - © %= e?ﬁ'[” C?})

e the computation graph we studied for feed-forward neural networks
IS not a special case of the above model, as

e the parameter W we want to take gradient with respect to, is not at

the Inpu
and h(wg) I(l mermﬂted as it is not a one-dimensional

functlon \C")
e

41

Auto-differentiation

e auto-differentiation uses the chain rule to differentiate a function
represented by its evaluation trace and compute V f(w)

e the insight is that z, affects target only through its children nodes
e we work backwards

0z
® _T — 1
0ZT
e we use the chain rule:
aZT . Z aZT aZC
0z 0z, 0z,

cechildren of z,

where a child node is a node that z, directly points to

0T 97[CQ)

—

VR 2L

42

fw,wy) = (sinLrw/wy) + 3w /w, — exp(2w,)) X Bw,/w, — exp(2w,))

°* 7 =W /W2 The program can be translated into
a computation graph

® Zz — SiIl(Z?Z'Zl)
* 3 = eXp(2wy)
® g = 3Z1 — 3

-(?5=z2+z4j

—

e output: 7, = 74 X Z5

43

Auto-differentiation

e the reverse mode of auto-differentiation
e forward pass

e compute f(w) and store all intermediate variables

e backward pass

07
. initialize: — = 1
aZT
e fortr=7T-1,...,0
aZT - Z OZT aZC
Y cechildren of z, 7%¢ 9z,
07
, return: — = V., f(w)

620

44

Over-fitting and regularization in neural networks

Representation power vs. size and regularization

@ more layers and more nodes in each layer gives larger representation
power, but can lead to overfitting

3 hidden neurons 6 hidden neurons 20 hidden neurons

e larger regularization coefficient gives smoother surface, potentially
avoiding overfitting

A =0.001 A=0.01

Dropout (yet another regularization technique)

(b) After applying dropout.

e Dropout is another recently introduced (["Dropout: A Simple Way to
Prevent Neural Networks from Overfitting", Srivastava, Hinton,
Krizhevsky, Sutskever, Salakhutdinov, 2014]) technique for

regularization

@ at training, each "neuron" is active with some probability p, and set
to zero otherwise

@ at testing, all neurons are active, but scaled by p

Drop out encourages all nodes to contribute equally, as nodes are randomly unavailable

4¢

@ pseudo code

p=20.5

probability of keeping a unit active.

def train_step(X):
forward pass for example 2-layer neural network
H1 = np.maximum(0, np.dot(Wl, X) + bl)
Ul = np.random.rand(*H1.shape) < p
first dropout mask

H1 *= Ul

drop

out = np.dot(W2, H1) + b2

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

def predict(X):
ensembled forward pass
H1 = np.maximum(0, np.dot(Wi, X) + bl) * p
NOTE: scale the activations

out = np.dot(W2, H1) + b2

r?est Error

46 \ T ‘_:—-/ Y
— 15 frames 3 layers 2000 units
al M~ — 15 frames 3 layers 4000 units

— 31 frames 3 layers 4000 units
—— 31 frames 4 layers 4000 units

42 4!

e

finetuning wué:t dropout

Classification Error %
< % &
(/‘——"’T 0
AN
\
\
|

finetuning with dropout

32}

0 50 100 150 200

50% dropout for hidden layer and 20% dropout for input layer

47

48

Convolutional Neural Networks

Invariances

* in many applications, we know that the prediction should be unchanged or
invariant when the input is transformed in certain ways

* for example, in image classification, the prediction should be invariant to
* changing position (translation invariance),
* changing its size (scale invariance), or

* small rotations (rotation invariance)
* for speech, faster or slower time scale should not change the meaning

* however, these invariant transforms significantly change the raw data, making
it challenging to train an invariant model

* one solution is data augmentation, which is including many invariant
transformed versions of the training data

ERIERERE:

* this often times is impractical due to the increase in training data, and training
time
49

50

Convolutional networks

e in a specific but popular example of image classification,
we want to design neural network architectures that captures the
invariances that we want to impose (translation, small rotation, scale)

e also, a key aspect of image data is that close-by pixels are likely to be
more related than distant pixels (locality)

e convolutional neural networks exploit this property by first extracting
local features and merge those local features in later stages when
constructing higher order features

e recall that a fully connected layer of feed-forward neural network
extracts linear features and applies a non-linear activation

420 = Wy

Example: 1-d convolution

e convolutional layer extracts the same local features,
but for many locations of the input
Convolution operation

Eilter w E R?\
O —+§ a = wxx
© e RA / anRd‘(k‘l) & ,
d; = Z Wikivi—1
j=1

Applies the same filter through
a sliding window on the input

In X a

A 4G % ('l—kZ'O‘ﬁ'GC'-()
2) L+0 <
O+ — E‘}" CO/’“‘/O'C(/"/‘“‘) :"1
_1 L M’ ("’\/ \/ O) ¢ C \/O/*{> -:
1 - reduces number of parameters

T - captures locality
51

- Imposes translation invariance

2-d convolution

e consider an image x € R% and a filter w € R

Input x Filter w | |
1/1/1]/0]0 1101 Convolution operation
0o/1]1]1]0 ol 1o a = wkxXx
0[0|1|1|1 2o |1 k
0(0|1[1|0 .
0ol1(1|0]|0 ail,iz - le,jzxi1+j1—1,i2+j2—1

JinJo=1
Output ¢
(4 1><1 1x0 1x 0 0
OXO 1x1 1x 1 0 N 3
0/o/1l11
r.J
ol0(0[1(1]|0
©10(1]1({0]|0

53

Role of the filter

Edge detection

Sharpen

Box blur

(normalized)

Gaussian blur

(approximation)

Filter w
1 0 —1T
0 0 O
-1 0 1
— T
0 1 0
1 -4 1
0 1 0.
=] =1 -=—1]
-1 8 -1
-1 -1 -1}
0 -1 0
0 -1 0]
1 1 17
1 1 1 1

9
1 1 1,
1 2 1]
1 2 4 2
16
1 2 1

Output ¢

3-d convolution (single filter case)

e input x € R4 filter w € RS output g € R@-*k=D)x(@d=k=1)

Convolution operation
a = WxXx

Wi jacMi = L=,

54

55

3-d convolution (one convolutional layer)

e input x € R™PS Miitters w, € RPFS output a € R *=Dix(@=(k=1)

3

[

32

27

0000 (

64 filters

- M convolutions are computed
- this is still a linear operation
- we apply a non-linear activation at the output

5 >< S filters w,,
ﬂl MEESDNIITAF HNESESAERTIESRESEREESR S

% ’\‘ .' ..

.‘.. Figure copyright Andrej Karpathy.

‘

Pooling (locally summarizing the convol eatures)

Si pth slice
A
Pooling reduces the 11124 | |
dimension and can be 5 | ¢ 7|8 g"nadxsr;ﬁg'evgth DN @ g
interpreted as “This filter had | ; -
a high response in this 3]2 [0
general region” 11| 2 (4

LJ’U’%D - eonv loyen

27x27x64

14x14x64

pool

- other functionals include, max pooling, average pooling, and L2-norm pooling
- It should be a function independent of the input permutation

(to impose shift invariance)
o7

A single convolutional + pooling layer as feature extraction

3

6
6@
3

32

27

0000

Convolve
with 64 6x6x3 filters

Why pooling?

- if we used pooling with a larger stride, then the output feature is
(almost) invariant to small shifts

58

064 filters

14x1

4

MaxPool with

2x2 filters
and stride 2

Flatten into a single
vector of size

14*14*64=12544

Hidden convolutional layers learn patterns of increasing complexity

59

Deep neural networks learns non-linear features

tlmll 1=
.\E-E, _—:'l‘
| &7 TN G

SN N Y
NZR¥N -
2 04NN

=11 11mEs

’Q“’

B q

B’ - - be .
:EH‘CQ’::;E. -

ASNITT.
NER¥N =
2 04NN

=11\

Elephants

SN NI T
h L] LN
2 0 ANMN

=11 11mEs

Chairs

e T
THE RN
S'I‘!\ ¥ Yt
e TR

AT B T
05 2 =)
‘tf‘?“.l] ‘pglf
BN\ s

il N

SN
NZR¥\ =
"N WALS

=11 01mEs

61

Convolutional neural network (LeNet 1990°s)

e A convolutional neural network consists of multiple
convolution, pooling, and fully connected layers

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

....... ~ew._ dog(0.01)
l_lI-'-!-_ qtgb%?zg(gdgz)

ir ’
B ¢ | = g

@ 82 error made by LeNet

™ < — o <
A A A A A
S LA | .
JA\? o 9/56“-9
5 ™ s o -
A A A A A
ViRl TI L o
O @ o O (o)
un ™~ — w <
A A A A
S_ | .6.0/.
e ™~ O 0)
 JRC IR R S
A A
Q.?.?.b.»«_
N ™ - O <
2?4 % AT]
A A
y. _9_ .n_
< o o o o
™ ™~ o N -
A A A A A
5.7_] _)
\ © O) ~N
— ™ N (Tg} O
A A A A A
NN
o~ Ty 5 e <
N o0 0 o — <
A A A A A
)Aw__\l..l_lf._l.&_ _
o o~ N 0 >
5 o ™ =) -

® e O
A
A~
(o) N O
A A A
Qﬂ_ V/_ fo_
™ < g
@ o o
@ NN
oo
2 S o YR
T
Sy LN
< (Tg) N
hﬁvo f.v » Q*.o
(9 @) O r~-

g &

4->9 2->8

62

@ 35 error made by Ciresan et al.

@ further, most of the time the true answer is in the top-2 prediction
o idea: train with transformed samples & Pata ‘4%’“6“@{‘6‘7

zl q° 2° 9° 'z‘*‘f

'—Qg 994 92 35

({9 55 ?4
LIS q‘} bﬂ 66 éz qll‘)l

9 4

f O 55 .? 79 '/? l 1
¥ P 17

7? ;2 ‘46 65 ;4 éﬂ

S8 Fl = 16 65 94 =

|

ILSVRC-2012 challenge on ImageNet

@ 28 x 28 grey-scale to 256 x 256 color
@ 10 classes to 1,000 classes

e multiple objects

@ natural 3-d scene
e ~

u:luor*

leopard passenger car Iun+ glass

snow leopard subway train ﬁ*ing pan
Egyptian cat electric locomotive ‘+ﬁ‘°5C°P‘

65

winner: AlexNet
Alex Krizhevsky, llya Sutskever and Geoff Hinton, 2012

mirror image

subsampling to get 224 x 224 patches from 256 x 256 images

ReLU activation is faster to train and more expressive

Dropout to regularize

mite

container ship

motor scooter

mite

container ship

motor scooter

black widow | | lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

2 .

. L
d .

grilie mushroom cherry adagascar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri

fire engine

currant

howler monkey

66

Why are convolutional neural networks so successful?

Convolutional neural network imposes translation invariance
(via pooling and weight sharing)

and significantly reduces the number of parameters
(by weight sharing)

Structured sparse connections capture locality of images

these are main reasons for the success of deep learning for
computer vision

which is central to the popularity of deep learning

67

e Feed-forward neural network would not scale to images

e CIFAR-10 images are only 32*32*3 and a single neuron at
the first layer will have 32*32*3 = 3072 weights

cat
s!p

* this gets worse for practical size images

e Convolution allows us to extract many relevant features,
with small number of parameters

deer

-

airplane automobile bird

-

truc

demo: https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

