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• K-means algorithm fails, when 

2

• one way to capture such clustering is by training the parameters of a 
Gaussian Mixture Model (GMM) that best captures the data

demo: https://lukapopijac.github.io/gaussian-mixture-model/

https://lukapopijac.github.io/gaussian-mixture-model/
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Gaussian Mixture Model
• input: data  in 

• parameters of a Gaussian Mixture Model

• mixing weights: 


•       for 


• means: 


•     for 


• covariance matrices: 


•       for 


• we suppose that the given data has been generated from a GMM, and try to find 
the best GMM parameters (this naturally will define clustering of the training 
data)


• under the GMM, the -th sample is drawn as follows


• first sample a cluster , from 


• conditioned on this cluster,  is sampled from  
             

{xi}n
i=1 ℝd

πj = P(cluster membership = j) j ∈ {1,…, K}

μj ∈ ℝd j ∈ {1,…, K}

Cj ∈ ℝd×d j ∈ {1,…, K}

i
zi ∈ {1,…, K} π = [π1 , …, πK]

xi
xi ∼ N(μzi

, Czi
)6



Maximum likelihood estimation (MLE)
• we can find the best GMM, by MLE


• for simplicity, suppose  and 


• Model parameters are 


• the probability of observing a sample  can be written as  
 
           




• MLE tries to find 
 

   


• however, unlike least squared or logistic regression, this is not a concave 
function of the parameters (thus hard to find the optimal solution)


• in general, MLE of a mixture model is not convex/concave optimization

d = 1 K = 2
π1, π2, μ1, μ2, C1, C2 ∈ ℝ

xi

P(xi |π1, π2, μ1, μ2, C1, C2) = π1
1

2πC1
e− (xi − μ1)2

2C1

≜ N(xi|μ1,C1)

+ π2
1

2πC2
e− (xi − μ2)2

2C2

≜ N(xi|μ2,C2)

arg max
π1,π2,μ1,μ2,C1,C2

n

∑
i=1

log P(xi |π1, π2, μ1, μ2, C1, C2)
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exercise: fitting a single Gaussian model
• given  ,fit the best Gaussian model with mean  and variance 

• using MLE we want to solve  

  


• we compute gradient and set it to zero:


•   

 

which is zero for   

 
(which makes sense as it is the empirical mean)


•  
 

which is zero for  

 
(which makes sense as it is the empirical variance)

{xi}n
i=1 ∈ ℝ μ ∈ ℝ C ∈ ℝ

maximizeμ,C ℒ(μ, C) =
n

∑
i=1

( −
(xi − μ)2

2C
− log( 2πC))

log N(xi|μ,C)

∇μℒ(μ, C) =
1
C

n

∑
i=1

(μ − xi)

μ =
1
n

n

∑
i=1

xi

∇Cℒ(μ, C) =
∑n

i=1 (xi − μ)2

2C2
−

n
2C

C =
1
n

n

∑
i=1

(xi − μ)2
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MLE for GMM
• we want to fit a model by solving 

 




• define  

 

                


• setting the gradient to zero, we get


•  where , and  where 


•     and    


•  and 


• both LHS and RHS depend on the parameters, and no closed form solution exists


• note that if we know ’s it is trivial to compute parameters, and vice versa

maximizeπ1,π2,μ1,μ2,C1,C2

n

∑
i=1

log(π1
1

2πC1
e− (xi − μ1)2

2C1

≜ N(xi|μ1,C1)

+ π2
1

2πC2
e− (xi − μ2)2

2C2

≜ N(xi|μ2,C2)

)

ri = P(zi = 1 |xi) =
P(zi = 1,xi)

P(zi = 1,xi) + P(zi = 2,xi)

=
π1N(xi |μ1, C1)

π1N(xi |μ1, C1) + π2N(xi |μ2, C2)

π1 =
N1

n
N1 =

n

∑
i=1

ri π2 =
N2

n
N2 =

n

∑
i=1

(1 − ri)

μ1 =
1
N1

n

∑
i=1

rixi μ2 =
1
N2

n

∑
i=1

(1 − ri)xi

C1 =
1
N1

n

∑
i=1

ri(xi − μ1)2 C2 =
1
N2

n

∑
i=1

(1 − ri)(xi − μ2)2

ri9



Expectation Maximization (EM) algorithm
• EM is a popular method to solve MLE for mixture models


• input: training data 


• output: 


• initialization: randomly initialize the parameters

• repeat


• E-step (Expectation): parameters  soft membership


• 


• M-step (Maximization): soft membership  parameters


•  where , and  where 


•     and    


•  and 

{xi}n
i=1

π1, π2, μ1, μ2, C1, C2 ∈ ℝ

→

ri =
π1N(xi |μ1, C1)

π1N(xi |μ1, C1) + π2N(xi |μ2, C2)
→

π1 =
N1

n
N1 =

n

∑
i=1

ri π2 =
N2

n
N2 =

n

∑
i=1

(1 − ri)

μ1 =
1
N1

n

∑
i=1

rixi μ2 =
1
N2

n

∑
i=1

(1 − ri)xi

C1 =
1
N1

n

∑
i=1

ri(xi − μ1)2 C2 =
1
N2

n

∑
i=1

(1 − ri)(xi − μ2)2
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E-step

M-step
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0th iteration 1st iteration

2nd iteration Converged



For general number of clusters  and dimension K d
• we can derive EM for general case, in an analogous way


• Initialize parameters: 


• E-step: 

• For k=1,…,K 

      


• M-step:

• For k=1,..,K 

     

           where      
 

             and        


• once GMM is learned, clustering is straight forward: cluster according to the 's

π1, …, πK, μ1, …, μK, C1, …, CK

ri,k =
πk N(xi |μk, Ck)

∑K
j=1 πj N(xi |μj, Cj)

πk =
Nk

n
Nk =

∑n
i=1 ri,k

n

μk =
1
Nk

n

∑
i=1

ri,kxi Ck =
1
Nk

n

∑
i=1

ri,k(xi − μk)(xi − μk)T

ri,k
12



GMM for real data

• these are generated samples, from GMM trained on CelebA dataset

• image: 64*64*3=288 dimension

• covariance: restricted to rank-10 matrices

• mixture: K=1,000

13 Images from “on GANs and GMMs”, 2018, Richardson &Weiss



• top: center of a cluster  and  
the diagonal entries of the covariance matrix 


• note that we have trained 10-dimensional covariance matrix , 
with , and let  be the j-th column


• bottom: each row corresponds to different , and we show 

μk
Ck

Ck = AAT

A ∈ ℝ288×10 A( j)

j
μk + A( j),0.5 + A( j), μk − A( j)

14 Images from “on GANs and GMMs”, 2018, Richardson &Weiss



• middel: 


• Each row: middel + 


• Each column: middle + 

μk
c × A(1)

c × A(2)

15 Images from “on GANs and GMMs”, 2018, Richardson &Weiss



Mixture model for documents
• Input:  documents 


• Each document is a sequence of words of length  



• Bag-of-words model: 

• parameters:


• mixing weights:  for 


• word probability: 

• the generative model


• first sample topic from 


• next sample  words i.i.d. from 


• to make the problem tractable, this completely ignores the order of the 
words in the document (but still very successful in document 
clustering) 
 
        

n {xi}n
i=1

T
xi = (w1, w2, …, wT)

πk = P(topic = k) k ∈ {1,…, K}
bwk = P(word = w | topic = k)

π = (π1, …, πK)
T bk = (bw1k, …, bw200,000k)

P(topic zi = k, xi = (w1, …, wT)) = πkbw1k⋯bwTk
16



Topic modeling
• to fit a topic model, we solve the following 

                   


• we can apply EM algorithm


• initialize 


• E-step: parameters  soft assignments


• 


• M-step: soft assignments  parameters


•      where    


•

maximizeb∈ℝK×T,π∈ℝK

n

∑
i=1

log P(xi |b, π)

b, π
→

rik = P(topic zi = k |xi) =
πkbw1k⋯bwTk

∑K
k′ =1 πk′ bw1k′ ⋯bwTk′ 

→

πk =
Nk

n
Nk =

n

∑
i=1

rik

bwk =
1
Nk

n

∑
i=1

rik
Count(w in xi)

T
17



Dynamic topic modeling (over time)

18 From “Dynamic Topic Models” Blei & Lafferty 2006



Dynamic topic modeling (over time)

19 From “Dynamic Topic Models” Blei & Lafferty 2006



General Expectation Maximization
• consider fitting a (general) mixture distribution

• training data:  (or it could be )


• suppose each sample is drawn i.i.d. from a distribution that a cluster  for 
the sample  is first drawn with probability  and then the 
sample  is drawn according to its cluster membership with 
               
and we only observe ’s and not ’s 

• to maximize the log-likelihood given by  

       

         

{x1, …, xn} {(x1, y1), …, (xn, yn)}
zi

xi π = {π1, …, πk}
xi
p(xi, zi = k; w = {w1, …, wK}, π = {π1, …, πK})

xi zi

ℓ(w, π) =
n

∑
i=1

log(
K

∑
k=1

p(xi, zi = k; w, π)

p(x;w,π)

)

20



General Expectation Maximization
• Randomly initialize 


• Repeat for t=1,…,T


• E-step: given , find ’s 
          
 

             

 

              

 

• M-step: given ’s find  

               for  

 

            for 

w(0) = {w(0)
1 , …, w(0)

K }, π(0) = {π(0)
1 , …, π(0)

K }

w, π rik
rik = ℙ(zi = k |xi; w(t−1), π(t−1))

=
ℙ(zi = k, xi; w(t−1), π(t−1))

ℙ(xi; w(t−1), π(t−1))

=
ℙ(zi = k, xi; w(t−1), π(t−1))

∑K
k′ =1 ℙ(zi = k′ , xi; w(t−1), π(t−1))

rik w(t), π(t)

π(t)
k =

1
n

n

∑
i=1

rik k ∈ {1,…, K}

w(t)
k = arg max

wk

n

∑
i=1

rik log ℙ(xi |zi = k; wk) k ∈ {1,…, K}
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