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Dimensionality reduction
• it takes  memory to store data  with 

• but many real data have repeated patterns

• can we represent each image compactly, but still preserve most of 

information?

n × d {xi}n
i=1 xi ∈ ℝd
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Input images: Principal components:



Principal components
• patterns that capture the distinct features of the samples 

is called principal component (to be formally defined later)

• we can represent each sample as a weighted linear 

combination of the principal components, and just store 
the weights (As opposed to all pixel values)
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Input images: Principal components:Input images: Principal components:
≈ a[1]u1 + a[2]u2 + ⋯ + a[25]u25
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10 principal components give  
a pretty good reconstruction of the face

real face

average face



Principal Component Analysis (PCA) 
Representing data compactly
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PCA formulation 1: direction of greatest variance
• given dataset 


• we will assume that the data is centered at the origin, such that 


• otherwise, everything we do can be applied to the re-centered version of the 

data, i.e. , with 


• we want to find the direction  of greatest variance,  
and as we care about the direction, we will assume 


• we will justify why we care about greatest variance direction, later

{xi}n
i=1

1
n

n

∑
i=1

xi = 0

{xi − x̄}n
i=1 x̄ =

1
n

n

∑
i=1

xi

u ∈ ℝd

∥u∥2 = 1
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PCA formulation 1: direction of greatest variance
• for a direction 


•  is the projection of  onto , i.e. the point on the direction of   
that is closest to 


• the length of the projection is 


• mean of  is zero, as 


• similarly, mean of  is also zero


• so, variance is 


• variance maximizing direction is 
 

 

 



• such variance maximizing directions  
are called the principal components 


• this is 1-dimensional PCA

u ∈ ℝd

pi = (uT xi)u ∈ ℝd xi u u
xi

∥pi∥2 = uT xi

{pi}n
i=1

n

∑
i=1

pi =
n

∑
i=1

(uT xi)u = uT(
n

∑
i=1

xi)u = 0

{∥pi∥2}n
i=1

1
n

n

∑
i=1

∥pi∥2
2

arg max
u∈ℝd

1
n

n

∑
i=1

( uT xi )2

 subject to ∥u∥2
2 = 1
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xi

pi

u



The optimization problem in a matrix form

• recall the data matrix , and the optimization is 
 
       


• assuming the data has zero mean, the covariance matrix of the data is 
defined as  
 

       


• which gives  
 
      

X ∈ ℝn×d

arg max
u : ∥u∥2

2=1
uTXTXu

C =
1
n

n

∑
i=1

xixT
i =

1
n

XTX

arg max
u : ∥u∥2

2=1
uTCu
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 subject to ∥u∥2
2 = 1

arg max
u∈ℝd

1
n

n

∑
i=1

( uT xi )2
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Solving the optimization

• we first claim that this optimization problem has the same optimal 
solution as the following inequality constrained problem


• the reason is that, because  for all  (which we will 
prove in a bit), the optimal solution of  has to have 


• if it did not have , say , then we can just multiply 
this  by a constant factor of  and increase the objective by a 
factor of  while still satisfying the constraints 

uTCu ≥ 0 u ∈ ℝd

(b) ∥u∥2
2 = 1

∥u∥2
2 = 1 ∥u∥2

2 = 0.9
u 10/9

10/9
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maximizeu uTCu
 subject to ∥u∥2

2 = 1

maximizeu uTCu − λ∥u∥2
2

Fλ(u)

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

(a)

(b)



Solving the optimization
• we are left to prove the following claim


• claim:  

where 


• proof:  
 

 

 

              

 
for any 

uTCu ≥ 0
C =

1
n

n

∑
i=1

xixT
i

uTCu =
1
n

n

∑
i=1

uT(xixT
i )u

=
1
n

n

∑
i=1

(uT xi)2 ≥ 0

u ∈ ℝd
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Solving the optimization

• we are maximizing the variance, while keeping  small

• this can be reformulated as an unconstrained problem, with Lagrangian 

encoding, to move the constraint into the objective  
 
 
 
 

• this encourages small  as we want, and we can make this connection 
precise: there exists a (unknown) choice of  such that the optimal solution 
of  is the same as the optimal solution of 


• further, for this choice of ,  the optimal  has 


• our strategy is to analytically describe  that is optimal solution of , 
and find  such that 

u

u
λ

(c) (b)
λ u ∥u∥2 = 1

u(λ) (c)
λ ∥u(λ)∥2

2 = 116

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

maximizeu uTCu − λ∥u∥2
2

Fλ(u)

(b)

(c)



Solving the optimization
• to find such  and the corresponding , we solve the unconstrained optimization, by 

setting the gradient to zero 
                           


• the candidate solution satisfies: ,      i.e. an eigenvector of 


• let  denote the largest eigenvalue and corresponding eigenvector of , 
with norm one, i.e. 


• one property of the largest eigenvalue is that 


•            and  the maximum is achieved with 

• we claim that for 


• , the optimal solution is  with objective value zero


• , one optimal solution is  with , with objective value 
infinity


• , one optimal solution is , with objective value zero

λ u

∇Fλ(u) = 2Cu − 2λu = 0
Cu = λu C

(λ(1), u(1)) C
∥u(1)∥2

2 = 1

uTCu ≤ λ(1)∥u∥2
2 u = u(1)

λ > λ(1) u = 0
λ < λ(1) u = cu(1) c = ∞

λ = λ(1) u = u(1)
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maximizeu uTCu − λ∥u∥2
2

Fλ(u)



The solution

• if  then one can take , which gives  
                    

and we can now take  as large as we want to make the objective unbounded 
(and hence optimal  has norm unbounded)


• if  then one can show that the optimal , as for any  with norm  
 
                  

and taking  maximizes the objective


• hence, only  gives optimal  with unit norm, i.e.  
and the optimal solution is  

• finally, we found the optimal solution of 
 
 
which is the eigenvector  corresponding to the top eigenvalue  of  

λ < λ(1) u = cu(1)

Fλ(u) = λ(1)c2 − λc2 = (λ(1) − λ
>0

)c2

c
u

λ > λ(1) u = 0 u c,

Fλ(u) ≤ λ(1)c2 − λc2 = (λ(1) − λ
<0

)c2

c = 0
λ = λ(1) u ∥u∥2

2 = 1
u = u(1)

u(1) λ(1) C
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maximizeu uTCu − λ∥u∥2
2

maximizeu uTCu
 subject to ∥u∥2

2 = 1



The principal component analysis
• so far we considered finding ONE principal component 

• it is the eigenvector corresponding to the maximum eigenvalue 

of the covariance matrix  

                              


• We can use Singular Value Decomposition (SVD) to find such 
eigen vector


• note that is the data is not centered at the origin, we should re-
center the data before applying SVD


• in general we define and use multiple principal components

• if we need  principal components, we take  eigenvectors 

corresponding to the largest  eigenvalues of  

u ∈ ℝd

C =
1
n

XTX ∈ ℝd×d

r r
r C
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Alternate view of PCA: minimizing reconstruction error
• Dimensionality reduction (for some ):  

we would like to have a set of orthogonal directions , with 
for all j, such that each data can be represented as linear combination of those 
direction vectors, i.e.  
        

• those directions that minimize the  
average reconstruction error for a dataset  
is called the principal components 


• given a choice of ,  
the best representation  of   
is the projection of the point onto  
the subspace spanned by ’s, i.e. 
 

  


• the goal is to find  to  
minimize the reconstruction error 

       

r ≪ d
u1, …, ur ∈ ℝd ∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

u1, …, ur
pi xi

uj

pi =
r

∑
j=1

(uT
j xi)uj

u1, …, ur

1
n

n

∑
i=1

∥xi − pi∥2
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xi

pi

u1

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]



Variance maximization vs. reconstruction error minimization

• both give the same principal components as optimal solution

25

xi

pi

u1

Variance maximization finds directions  
that maximizes the spread of ’spi

Reconstruction error minimization  
finds directions that minimize  
the distances to ’spi



Alternate view of PCA: minimizing reconstruction error

•    

 
where 


• we will not formally prove it, but the optimal solution of this 
problem is the  principal components

pi =
r

∑
j=1

(uT
j xi)uj = UUT xi

U = [u1 u2 ⋯ ur] ∈ ℝd×r

r
26

minimize  1
n

n

∑
i=1

∥xi − pi∥2

minimize  1
n

n

∑
i=1

∥xi − UUT xi∥2

subject to  UTU = Ir×r



Principal Component Analysis
• input: data points , target dimension 


• output: -dimensional subspace

• algorithm: 


• compute mean    


• compute covariance matrix 

            


• let  be the set of (normalized) eigenvectors with 
corresponding to the largest  eigenvalues of 


• return 


• further the data points can be represented compactly via 
           

{xi}n
i=1 r ≪ d

r

x̄ =
1
n

n

∑
i=1

xi

C =
1
n

n

∑
i=1

(xi − x̄)(xi − x̄)T

(u1, …, ur)
r C

U = [u1 u2 ⋯ ur]

ai = UT(xi − x̄) ∈ ℝr

27



reconstruction
• given principal component  and ,  

each data point is represented in a lower dimension as  
                


• then the reconstruction of the data point is  

                 


• the reconstruction error is  
 
                  
                                    
                                   

U ∈ ℝd×r x̄ ∈ ℝd

ai = UT(xi − x̄)

pi = x̄ +
r

∑
j=1

ai[ j]uj = x̄ + Uai

∥xi − pi∥2
2 = ∥(xi − x̄) − (pi − x̄)∥2

2
= ∥(xi − x̄) − Uai∥2

2
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Matrix completion for recommendation systems

• users provide ratings on a few movies, and we want to predict the 
missing entries in this ratings matrix, so that we can make 
recommendations


• without any assumptions, the missing entries can be anything, and no 
prediction is possible29

n =

= d



Matrix completion
• however, the ratings are not arbitrary, but people with similar 

tastes rate similarly

• such structure can be modeled using low dimensional 

representation of the data as follows

• we will find a set of principal component vectors 




• such that that ratings  of user , can be represented as  
               
                    
for some lower-dimensional  for -th user and some 




• for example,  means how horror movie fans like each of 
the  movies,


• and  means how much user  is fan of horror movies               

U = [u1 u2 ⋯ ur] ∈ ℝd×r

xi ∈ ℝd i
xi = ai[1]u1 + ⋯ai[r]ur

= Uai
ai ∈ ℝr i

r ≪ d
u1 ∈ ℝd

d
ai[1] i
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Matrix completion
• let  be the ratings matrix, and 

assume it is fully observed, i.e. we know all the entries


• then we want to find  and 
 that approximates  

X = [x1 x2 ⋯ xn] ∈ ℝd×n

U ∈ ℝd×r

A = [a1 a2 ⋯ an] ∈ ℝr×n X
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X

User i

Movie j
d

n

U A≈

• if we observe all entries of , then we can 
solve  

      


 
which can be solved using PCA (i.e. SVD)

X

minimizeU,A

n

∑
i=1

∥xi − Uai∥2
2



Matrix completion
• in practice, we only observe  partially


• let  denote  observed ratings for user  on movie 
X

Strain = {(iℓ, jℓ)}N
ℓ=1 N iℓ jℓ

32

X

 for user ai i

 for movie vT
j j

d
n

U A≈

• let  denote the -th row of  and  denote -th column of 


• then user ’s rating on movie , i.e.  is approximated by , which is the 
inner product of  (a column vector) and a column vector  


• we can also write it as 

vT
j j U ai i A

i j Xji vT
j ai

vj ai

⟨vj, ai⟩ = vT
j ai



Matrix completion
• a natural approach to fit ’s and  to given training data is to solve  

                


• this can be solved, for example via gradient descent or alternating 
minimization


• this can be quite accurate, with small number of samples

vj a′ is
minimizeU,A ∑

(i,j)∈Strain

(Xji − vT
j ai)2
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Gradient descent

X

UA (Xji − (UA)ji)2
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Gradient descent

X

UA (Xji − (UA)ji)2
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Gradient descent

X

UA (Xji − (UA)ji)2
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Gradient descent

X

UA (Xji − (UA)ji)2
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Gradient descent

X

UA (Xji − (UA)ji)2
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Gradient descent

X

UA (Xji − (UA)ji)2
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Gradient descent

X

UA (Xji − (UA)ji)2



Matrix completion

•                         


• Gradient descent on  and  can be implemented via 
 
                     

for all , where  is the set of users who rated movie  and  
 
                     

 
for all , where  is the set of movies that were rated by 
user  

minimizeU,A ∑
(i,j)∈Strain

(Xji − vT
j ai)2

{vj}d
j=1 {ai}n

i=1

v(t)
j ← v(t−1)

j − 2η∑
i∈Sj

((v(t−1)
j )Ta(t−1)

i − Xji)a(t−1)
i

j ∈ {1,…, d} Sj j

a(t)
i ← a(t−1)

i − 2η∑
j∈Si

((v(t−1)
j )Ta(t−1)

i − Xji)v(t−1)
j

i ∈ {1,…, n} Si
i
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Matrix completion

•            


• alternating minimization

• repeat


• fix ’s and find optimal 


• for each , set the gradient to zero: 
, which gives 

 
 




• fix  and find optimal ’s (similarly)

minimizeU,A ∑
(i,j)∈Strain

(Xji − vT
j ai)2

vj a′ is
i

2∑
j∈Si

((v(t−1)
j )Tai − Xji)v(t−1)

j = 0

ai(∑
j∈Si

vjvT
j ) = ∑

j∈Si

Xijvj

ai = (∑
j∈Si

vjvT
j )

−1

∑
j∈Si

Xijvj

a′ is vj
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