
Principal Component Analysis

Sewoong Oh

CSE446

University of Washington

Dimensionality reduction
• it takes memory to store data with

• but many real data have repeated patterns

• can we represent each image compactly, but still preserve most of

information?

n × d {xi}n
i=1 xi ∈ ℝd

2

Input images: Principal components:

Principal components
• patterns that capture the distinct features of the samples

is called principal component (to be formally defined later)

• we can represent each sample as a weighted linear

combination of the principal components, and just store
the weights (As opposed to all pixel values)

3

Input images: Principal components:Input images: Principal components:
≈ a[1]u1 + a[2]u2 + ⋯ + a[25]u25

4

10 principal components give  
a pretty good reconstruction of the face

real face

average face

Principal Component Analysis (PCA)
Representing data compactly

5

PCA formulation 1: direction of greatest variance
• given dataset

• we will assume that the data is centered at the origin, such that

• otherwise, everything we do can be applied to the re-centered version of the

data, i.e. , with

• we want to find the direction of greatest variance,  
and as we care about the direction, we will assume

• we will justify why we care about greatest variance direction, later

{xi}n
i=1

1
n

n

∑
i=1

xi = 0

{xi − x̄}n
i=1 x̄ =

1
n

n

∑
i=1

xi

u ∈ ℝd

∥u∥2 = 1

6

PCA formulation 1: direction of greatest variance
• for a direction

• is the projection of onto , i.e. the point on the direction of
that is closest to

• the length of the projection is

• mean of is zero, as

• similarly, mean of is also zero

• so, variance is

• variance maximizing direction is 
 

 

 

• such variance maximizing directions  
are called the principal components

• this is 1-dimensional PCA

u ∈ ℝd

pi = (uT xi)u ∈ ℝd xi u u
xi

∥pi∥2 = uT xi

{pi}n
i=1

n

∑
i=1

pi =
n

∑
i=1

(uT xi)u = uT(
n

∑
i=1

xi)u = 0

{∥pi∥2}n
i=1

1
n

n

∑
i=1

∥pi∥2
2

arg max
u∈ℝd

1
n

n

∑
i=1

(uT xi)2

 subject to ∥u∥2
2 = 1

7

xi

pi

u

The optimization problem in a matrix form

• recall the data matrix , and the optimization is 
 

• assuming the data has zero mean, the covariance matrix of the data is
defined as  
 

• which gives  
 

X ∈ ℝn×d

arg max
u : ∥u∥2

2=1
uTXTXu

C =
1
n

n

∑
i=1

xixT
i =

1
n

XTX

arg max
u : ∥u∥2

2=1
uTCu

8

 subject to ∥u∥2
2 = 1

arg max
u∈ℝd

1
n

n

∑
i=1

(uT xi)2

9

10

11

12

13

Solving the optimization

• we first claim that this optimization problem has the same optimal
solution as the following inequality constrained problem

• the reason is that, because for all (which we will
prove in a bit), the optimal solution of has to have

• if it did not have , say , then we can just multiply
this by a constant factor of and increase the objective by a
factor of while still satisfying the constraints

uTCu ≥ 0 u ∈ ℝd

(b) ∥u∥2
2 = 1

∥u∥2
2 = 1 ∥u∥2

2 = 0.9
u 10/9

10/9

14

maximizeu uTCu
 subject to ∥u∥2

2 = 1

maximizeu uTCu − λ∥u∥2
2

Fλ(u)

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

(a)

(b)

Solving the optimization
• we are left to prove the following claim

• claim:  

where

• proof:  
 

 

 

  

 
for any

uTCu ≥ 0
C =

1
n

n

∑
i=1

xixT
i

uTCu =
1
n

n

∑
i=1

uT(xixT
i)u

=
1
n

n

∑
i=1

(uT xi)2 ≥ 0

u ∈ ℝd

15

Solving the optimization

• we are maximizing the variance, while keeping small

• this can be reformulated as an unconstrained problem, with Lagrangian

encoding, to move the constraint into the objective  
 
 
 
 

• this encourages small as we want, and we can make this connection
precise: there exists a (unknown) choice of such that the optimal solution
of is the same as the optimal solution of

• further, for this choice of , the optimal has

• our strategy is to analytically describe that is optimal solution of ,
and find such that

u

u
λ

(c) (b)
λ u ∥u∥2 = 1

u(λ) (c)
λ ∥u(λ)∥2

2 = 116

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

maximizeu uTCu − λ∥u∥2
2

Fλ(u)

(b)

(c)

Solving the optimization
• to find such and the corresponding , we solve the unconstrained optimization, by

setting the gradient to zero 

• the candidate solution satisfies: , i.e. an eigenvector of

• let denote the largest eigenvalue and corresponding eigenvector of ,
with norm one, i.e.

• one property of the largest eigenvalue is that

• and the maximum is achieved with

• we claim that for

• , the optimal solution is with objective value zero

• , one optimal solution is with , with objective value
infinity

• , one optimal solution is , with objective value zero

λ u

∇Fλ(u) = 2Cu − 2λu = 0
Cu = λu C

(λ(1), u(1)) C
∥u(1)∥2

2 = 1

uTCu ≤ λ(1)∥u∥2
2 u = u(1)

λ > λ(1) u = 0
λ < λ(1) u = cu(1) c = ∞

λ = λ(1) u = u(1)
17

maximizeu uTCu − λ∥u∥2
2

Fλ(u)

The solution

• if then one can take , which gives  
  

and we can now take as large as we want to make the objective unbounded
(and hence optimal has norm unbounded)

• if then one can show that the optimal , as for any with norm  
 
  

and taking maximizes the objective

• hence, only gives optimal with unit norm, i.e.  
and the optimal solution is  

• finally, we found the optimal solution of 
 
 
which is the eigenvector corresponding to the top eigenvalue of

λ < λ(1) u = cu(1)

Fλ(u) = λ(1)c2 − λc2 = (λ(1) − λ
>0

)c2

c
u

λ > λ(1) u = 0 u c,

Fλ(u) ≤ λ(1)c2 − λc2 = (λ(1) − λ
<0

)c2

c = 0
λ = λ(1) u ∥u∥2

2 = 1
u = u(1)

u(1) λ(1) C
18

maximizeu uTCu − λ∥u∥2
2

maximizeu uTCu
 subject to ∥u∥2

2 = 1

The principal component analysis
• so far we considered finding ONE principal component

• it is the eigenvector corresponding to the maximum eigenvalue

of the covariance matrix  

• We can use Singular Value Decomposition (SVD) to find such
eigen vector

• note that is the data is not centered at the origin, we should re-
center the data before applying SVD

• in general we define and use multiple principal components

• if we need principal components, we take eigenvectors

corresponding to the largest eigenvalues of

u ∈ ℝd

C =
1
n

XTX ∈ ℝd×d

r r
r C

19

20

23

Alternate view of PCA: minimizing reconstruction error
• Dimensionality reduction (for some):  

we would like to have a set of orthogonal directions , with
for all j, such that each data can be represented as linear combination of those
direction vectors, i.e.  
  

• those directions that minimize the  
average reconstruction error for a dataset  
is called the principal components

• given a choice of ,  
the best representation of  
is the projection of the point onto  
the subspace spanned by ’s, i.e. 
 

• the goal is to find to  
minimize the reconstruction error 

r ≪ d
u1, …, ur ∈ ℝd ∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

u1, …, ur
pi xi

uj

pi =
r

∑
j=1

(uT
j xi)uj

u1, …, ur

1
n

n

∑
i=1

∥xi − pi∥2

24

xi

pi

u1

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]

Variance maximization vs. reconstruction error minimization

• both give the same principal components as optimal solution

25

xi

pi

u1

Variance maximization finds directions  
that maximizes the spread of ’spi

Reconstruction error minimization  
finds directions that minimize  
the distances to ’spi

Alternate view of PCA: minimizing reconstruction error

•  

 
where

• we will not formally prove it, but the optimal solution of this
problem is the principal components

pi =
r

∑
j=1

(uT
j xi)uj = UUT xi

U = [u1 u2 ⋯ ur] ∈ ℝd×r

r
26

minimize 1
n

n

∑
i=1

∥xi − pi∥2

minimize 1
n

n

∑
i=1

∥xi − UUT xi∥2

subject to UTU = Ir×r

Principal Component Analysis
• input: data points , target dimension

• output: -dimensional subspace

• algorithm:

• compute mean

• compute covariance matrix 

• let be the set of (normalized) eigenvectors with
corresponding to the largest eigenvalues of

• return

• further the data points can be represented compactly via 

{xi}n
i=1 r ≪ d

r

x̄ =
1
n

n

∑
i=1

xi

C =
1
n

n

∑
i=1

(xi − x̄)(xi − x̄)T

(u1, …, ur)
r C

U = [u1 u2 ⋯ ur]

ai = UT(xi − x̄) ∈ ℝr

27

reconstruction
• given principal component and ,  

each data point is represented in a lower dimension as  

• then the reconstruction of the data point is  

• the reconstruction error is  
 
  
  

U ∈ ℝd×r x̄ ∈ ℝd

ai = UT(xi − x̄)

pi = x̄ +
r

∑
j=1

ai[j]uj = x̄ + Uai

∥xi − pi∥2
2 = ∥(xi − x̄) − (pi − x̄)∥2

2
= ∥(xi − x̄) − Uai∥2

2

28

Matrix completion for recommendation systems

• users provide ratings on a few movies, and we want to predict the
missing entries in this ratings matrix, so that we can make
recommendations

• without any assumptions, the missing entries can be anything, and no
prediction is possible29

n =

= d

Matrix completion
• however, the ratings are not arbitrary, but people with similar

tastes rate similarly

• such structure can be modeled using low dimensional

representation of the data as follows

• we will find a set of principal component vectors

• such that that ratings of user , can be represented as  
  
  
for some lower-dimensional for -th user and some

• for example, means how horror movie fans like each of
the movies,

• and means how much user is fan of horror movies

U = [u1 u2 ⋯ ur] ∈ ℝd×r

xi ∈ ℝd i
xi = ai[1]u1 + ⋯ai[r]ur

= Uai
ai ∈ ℝr i

r ≪ d
u1 ∈ ℝd

d
ai[1] i

30

Matrix completion
• let be the ratings matrix, and

assume it is fully observed, i.e. we know all the entries

• then we want to find and
 that approximates  

X = [x1 x2 ⋯ xn] ∈ ℝd×n

U ∈ ℝd×r

A = [a1 a2 ⋯ an] ∈ ℝr×n X

31

X

User i

Movie j
d

n

U A≈

• if we observe all entries of , then we can
solve  

 
which can be solved using PCA (i.e. SVD)

X

minimizeU,A

n

∑
i=1

∥xi − Uai∥2
2

Matrix completion
• in practice, we only observe partially

• let denote observed ratings for user on movie
X

Strain = {(iℓ, jℓ)}N
ℓ=1 N iℓ jℓ

32

X

 for user ai i

 for movie vT
j j

d
n

U A≈

• let denote the -th row of and denote -th column of

• then user ’s rating on movie , i.e. is approximated by , which is the
inner product of (a column vector) and a column vector

• we can also write it as

vT
j j U ai i A

i j Xji vT
j ai

vj ai

⟨vj, ai⟩ = vT
j ai

Matrix completion
• a natural approach to fit ’s and to given training data is to solve  

• this can be solved, for example via gradient descent or alternating
minimization

• this can be quite accurate, with small number of samples

vj a′ is
minimizeU,A ∑

(i,j)∈Strain

(Xji − vT
j ai)2

33

34

Gradient descent

X

UA (Xji − (UA)ji)2

35

Gradient descent

X

UA (Xji − (UA)ji)2

36

Gradient descent

X

UA (Xji − (UA)ji)2

37

Gradient descent

X

UA (Xji − (UA)ji)2

38

Gradient descent

X

UA (Xji − (UA)ji)2

39

Gradient descent

X

UA (Xji − (UA)ji)2

40

Gradient descent

X

UA (Xji − (UA)ji)2

Matrix completion

•

• Gradient descent on and can be implemented via 
 
  

for all , where is the set of users who rated movie and  
 
  

 
for all , where is the set of movies that were rated by
user

minimizeU,A ∑
(i,j)∈Strain

(Xji − vT
j ai)2

{vj}d
j=1 {ai}n

i=1

v(t)
j ← v(t−1)

j − 2η∑
i∈Sj

((v(t−1)
j)Ta(t−1)

i − Xji)a(t−1)
i

j ∈ {1,…, d} Sj j

a(t)
i ← a(t−1)

i − 2η∑
j∈Si

((v(t−1)
j)Ta(t−1)

i − Xji)v(t−1)
j

i ∈ {1,…, n} Si
i

41

Matrix completion

•

• alternating minimization

• repeat

• fix ’s and find optimal

• for each , set the gradient to zero: 
, which gives 

 
 

• fix and find optimal ’s (similarly)

minimizeU,A ∑
(i,j)∈Strain

(Xji − vT
j ai)2

vj a′ is
i

2∑
j∈Si

((v(t−1)
j)Tai − Xji)v(t−1)

j = 0

ai(∑
j∈Si

vjvT
j) = ∑

j∈Si

Xijvj

ai = (∑
j∈Si

vjvT
j)

−1

∑
j∈Si

Xijvj

a′ is vj
42

