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Announcements

I HW2 posted. Due Feb 1.

I It is long. Start this week!

I Today:
Review: the perceptron algo New: Unsupervised learning
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Review
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Neuron-Inspired Classifier

f(x) = sign (w · x+ b)

remembering that: w · x =

d∑
j=1

w[j] · x[j]

Learning requires us to set the weights w and the bias b.
Scalings: Note that assuming ‖x‖ ≤ 1 doesn’t change anything. Even with this
scaling, the scale of ‖w‖ is arbitrary.
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Perceptron Learning Algorithm
Data: D = 〈(xn, yn)〉Nn=1, number of epochs E
Result: weights w and bias b
initialize: w = 0 and b = 0;
for e ∈ {1, . . . , E} do

for n ∈ {1, . . . , N}, in random order do
# predict
ŷ = sign (w · xn + b);
if ŷ 6= yn then

# update
w← w + yn · xn;
b← b+ yn;

end

end

end
return w, b

Algorithm 1: PerceptronTrain
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Linear Decision Boundary

w·x + b = 0

activation = w·x + b 
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When does the perceptron not converge?
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Linear Separability

A dataset D = 〈(xn, yn)〉Nn=1 is linearly separable if there exists some linear classifier
(defined by w, b) such that, for all n, yn = sign (w · xn + b).

If data are separable, (without loss of generality) can scale so that:

I “margin at 1”, can assume for all (x, y)

y (w∗ · x) ≥ 1

(let w∗ be smallest norm vector with margin 1).

I CIML: assumes ‖w∗‖ is unit length and scales the ”1” above.
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Linear Separability and the Geometric Margin

3 / 19

Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner




Perceptron Convergence
Due to Rosenblatt (1958).

Theorem: Suppose data are scaled so that ‖xi‖2 ≤ 1.
Assume D is linearly separable, and let be w∗ be a separator with “margin 1”.
Then the perceptron algorithm will converge in at most ‖w∗‖2 epochs.

I Let wt be the param at “iteration” t; w0 = 0

I “A Mistake Lemma”: At iteration t

If we do not make a mistake, ‖wt+1 −w∗‖2 = ‖wt −w∗‖2

If we do make a mistake, ‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 − 1

I The theorem directly follows from this lemma. Why?
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Today
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Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be labels.

Two simple unsupervised learning methods:

I cluster into K groups.

I project your data into less dimensions

I Today: look at these methods as objective function minimization.
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

The stars are cluster centers,
randomly assigned at first.
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Assign each example to its nearest
cluster center.
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Recalculate cluster centers to
reflect their respective examples.
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K-Means: An Iterative Clustering Algorithm
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K-Means: An Iterative Clustering Algorithm
(Review from last week.)

At this point, nothing will change;
we have converged.
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K-Means Clustering
Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: cluster assignment zn for each xn

initialize each µk to a random location, for k ∈ {1, . . . ,K};
do

for n ∈ {1, . . . , N} do
# assign each data point to its nearest cluster-center let
zn = argmink ‖µk − xn‖2;

end
for k ∈ {1, . . . ,K} do

# recenter each cluster
let Xk = {xn | zn = k};
let µk = mean(Xk);

end

while any zn changes from previous iteration;
return {zn}Nn=1;

Algorithm 2: K-Means
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Questions about K-Means

1. Does it converge?
Yes.

2. Does it converge to the right answer?
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What would we like to do?

I Objective function: find k-means, µ1, . . . µk, which minimizes the following
squared distance cost function:

N∑
n=1

(
min

k′∈{1,...,k−1}
‖xn − µk′‖22

)
I We can also write this objective function in terms of the assignments zn’s. How?

This is the general approach of loss function minimization: find parameters which
make our objection function “small” (and which also “generalizes”)

9 / 19

Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner




Convergence Proof Sketch

I The cluster assignments, the zn’s take only finitely many values. So the cluster
centers, the µk’s, also must only take a finite number of values. Each time we
update any of them, we will never increase this function:

L(z1, . . . , zN ,µ1, . . . ,µK) =

N∑
n=1

∥∥xn − µzn

∥∥2
2
≥ 0

L is the objective function of K-Means clustering.

I Convergence must occur in a finite number of steps, due to:
L decreases at every step; L can only take on finitely many values.
See CIML, Chapter 15 for more details.

I Does the solution depend on the random initialization of the means µ∗?
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Does K-means converge to the minimal cost solution?

I No! The objective is an NP-Hard problem, so we can’t expect any algorithm to
minimize the cost without essentially checking (near to) all assignments.

I Bad example for K-means:
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Aside: Is NP-hardness a relevant concept for ML problems?

I Maybe the set of ’hard’ problems may not be interesting.
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A Heuristic for Initializing K-Means

Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: initial points 〈µ1, . . . ,µK〉
pick n uniformly at random from {1, . . . , N} and let µ1 = xn;
for k ∈ {2, . . . ,K} do

# find the example that is furthest from all previously selected means

let n = argmax
n∈{1,...,N}

(
min

k′∈{1,...,k−1}
‖xn − µk′‖22

)
;

let µk = xn;

end
return 〈µ1, . . . ,µK〉;

Algorithm 3: FurthestFirst (K-means++)
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FurthestFirst in action
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FurthestFirst in action
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Some Comments

I K-means usually converges very quickly in practice.
I K-means++ still not guaranteed to find the global optima,

I in practice, we can get stuck.
I often try multiple initializations (use a little randomness in K-means++ and run the

algorithm multiple times).
I it does have (“multiplicative”) approximation guarantees.

I How to choose K?
I Information theory criterion (see CIML).
I Based on ’good’ function value decrease on ’holdout’ set.

See CIML.
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Recap: Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be labels.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

I Useful for visualization.

I Also fight the curse of dimensionality.
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Linear Dimensionality Reduction
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Linear Dimensionality Reduction

As before, you only have a training dataset consisting of 〈xn〉Nn=1.

Is there a way to represent each xn ∈ Rd as a lower-dimensional vector?

Why would we want to do this?
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Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that
mean

(
〈xn〉Nn=1

)
= 0.
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Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pn = xn · u is the projection of the nth example onto u.

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2
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Projecting x onto a vector u
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Projecting x onto an ’orthonormal’ basis u
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