Machine Learning (CSE 446): Unsupervised Learning

,

Sham M Kakade © 2018

University of Washington cse446-staff@cs.washington.edu

< □ > < □ > < □ > < Ξ > < Ξ > Ξ
 < ○ Q <
 1/19

- ► HW2 posted. Due Feb 1.
 - ▶ It is long. Start this week!
- ► Today:

Review: the perceptron algo New: Unsupervised learning

Review

Neuron-Inspired Classifier

$$f(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}\right)$$

remembering that:
$$\mathbf{w} \cdot \mathbf{x} = \sum_{j=1}^d \mathbf{w}[j] \cdot \mathbf{x}[j]$$

Learning requires us to set the weights \mathbf{w} and the bias b. Scalings: Note that assuming $||x|| \leq 1$ doesn't change anything. Even with this scaling, the scale of ||w|| is arbitrary.

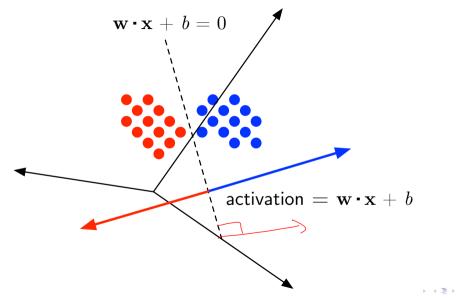
Perceptron Learning Algorithm

Data: $D = \langle (\mathbf{x}_n, y_n) \rangle_{n=1}^N$, number of epochs E**Result**: weights \mathbf{w} and bias binitialize: $\mathbf{w} = \mathbf{0}$ and $\mathbf{b} = 0$: for $e \in \{1, ..., E\}$ do for $n \in \{1, \ldots, N\}$, in random order do end end end return w, b

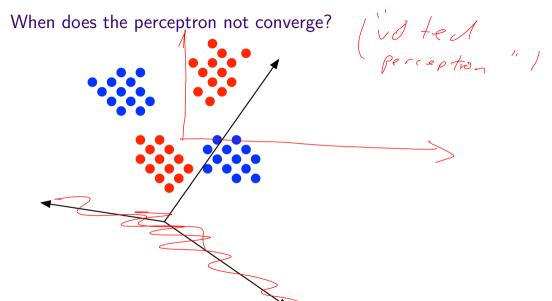
rdahe rule

Algorithm 1: PERCEPTRONTRAIN

Linear Decision Boundary



3



イロト イポト イヨト イヨト

Linear Separability

A dataset $D = \langle (\mathbf{x}_n, y_n) \rangle_{n=1}^N$ is **linearly separable** if there exists some linear classifier (defined by \mathbf{w}, b) such that, for all $n, y_n = \text{sign}(\mathbf{w} \cdot \mathbf{x}_n + b)$.

If data are separable, (without loss of generality) can scale so that:

▶ "margin at 1", can assume for all (x, y) // $y(\mathbf{w}_* \cdot \mathbf{x}) \ge 1$

(let w^* be smallest norm vector with margin 1).

• CIML: assumes $||w^*||$ is unit length and scales the "1" above. $||w^*|| = 1$ in GML lef.

Linear Separability and the Geometric Margin tor a fixed 50 m e 1 W // = 1 the min distance to me time is The margin is the largest (over all sep. lines) 200 イロト イポト イヨト イヨト

Perceptron Convergence

Due to Rosenblatt (1958).

Theorem: Suppose data are scaled so that $\|\mathbf{x}_i\|_2 \leq 1$. Assume D is linearly separable, and let be \mathbf{w}_* be a separator with "margin 1". Then the perceptron algorithm will converge in at most $\|\mathbf{w}_*\|^2$ epochs.

• Let \mathbf{w}_t be the param at "iteration" t; $\mathbf{w}_0 = 0$

• "A Mistake Lemma": At iteration t

If we do not make a mistake, $\|\mathbf{w}_{t+1} - \mathbf{w}_*\|^2 = \|\mathbf{w}_t - \mathbf{w}_*\|^2$ If we do make a mistake, $\|\mathbf{w}_{t+1} - \mathbf{w}_*\|^2 \le \|\mathbf{w}_t - \mathbf{w}_*\|^2 - 1$

The theorem directly follows from this lemma. Why?

Proot

1 in soter

Today

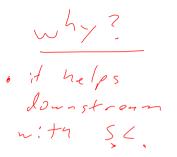
Unsupervised Learning

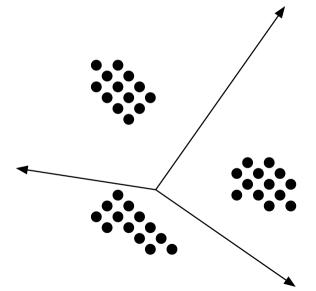
The training dataset consists only of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

There might, or might not, be labels.

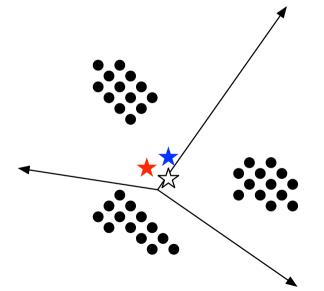
Two simple unsupervised learning methods:

- cluster into K groups.
- project your data into less dimensions
- ► Today: look at these methods as objective function minimization.



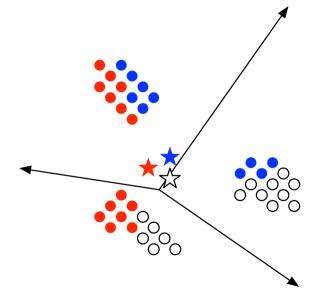


<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q (や 6 / 19



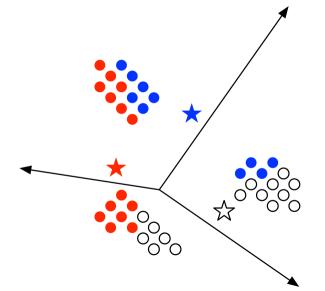
The stars are **cluster centers**, randomly assigned at first.

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 6/19



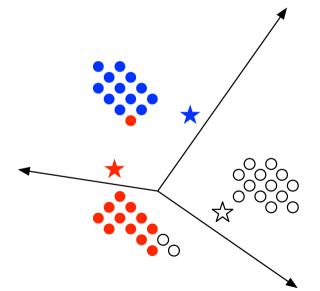
Assign each example to its nearest cluster center.

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 6 / 19



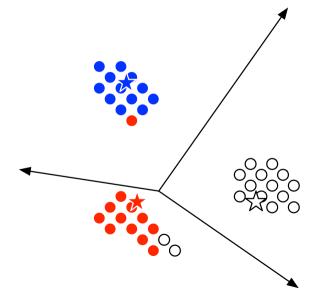
Recalculate cluster centers to reflect their respective examples.

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q () 6/19



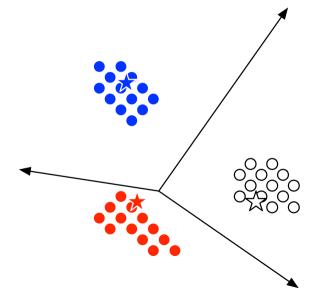
Assign each example to its nearest cluster center.

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 6/19



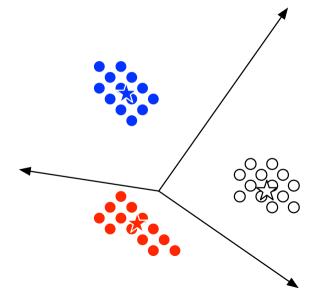
Recalculate cluster centers to reflect their respective examples.

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 のへで 6/19



Assign each example to its nearest cluster center.

<ロト < 回ト < 目ト < 目ト < 目ト 差 の Q (~ 6/19



Recalculate cluster centers to reflect their respective examples.

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 のへで 6/19

At this point, nothing will change; we have converged.

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q (や 6 / 19

K-Means Clustering

Data: unlabeled data $D = \langle \mathbf{x}_n \rangle_{n=1}^N$, number of clusters K**Result**: cluster assignment z_n for each \mathbf{x}_n initialize each $\boldsymbol{\mu}_k$ to a random location, for $k \in \{1, \dots, K\}$; **do**

for
$$n \in \{1, ..., N\}$$
 do
assign each data point to its nearest cluster-center let
 $z_n \neq \operatorname{argmin}_k \|\mu_k - \mathbf{x}_n\|_2;$
end
for $k \in \{1, ..., K\}$ do
recenter each cluster
let $\mathbf{X}_k = \{\mathbf{x}_n \mid z_n = k\};$
let $\mu_k = \operatorname{mean}(\mathbf{X}_k);$
end

while any z_n changes from previous iteration; return $\{z_n\}_{n=1}^N$;

Algorithm 2: K-MEANS

Questions about *K*-Means

- 1. Does it converge? Yes.
- 2. Does it converge to the right answer?

What would we like to do?

• **Objective function:** find *k*-means, μ_1, \ldots, μ_k , which minimizes the following squared distance cost function:

$$\sum_{n=1}^{N} \left(\min_{k' \in \{1, \dots, k - \mathbf{\mathcal{A}}\}} \|\mathbf{x}_n - \boldsymbol{\mu}_{k'}\|_2^2 \right)$$

• We can also write this objective function in terms of the assignments z_n 's. How? $k = \frac{1}{2} \frac$

This is the general approach of loss function minimization: find parameters which make our objection function "small" (and which also "generalizes")

Convergence Proof Sketch

The cluster assignments, the z_n's take only finitely many values. So the cluster centers, the μ_k's, also must only take a finite number of values. Each time we update any of them, we will never increase this function:

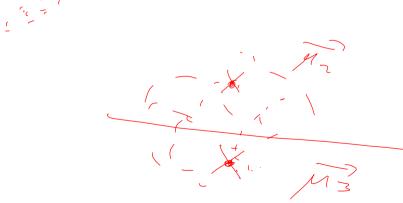
$$L(z_1, \dots, z_N, \overline{\mu_1}, \dots, \overline{\mu_K}) = \sum_{n=1}^N \|\mathbf{x}_n - \mu_{\overline{z_n}}\|_2^2 \ge 0$$

L is the **objective function** of *K*-Means clustering.

- L is the objective function of K-Means clustering.
 Convergence must occur in a finite number of steps, due to: L decreases at every step; L can only take on finitely many values. See CIML, Chapter 15 for more details.
- Does the solution depend on the random initialization of the means μ_* ?

Does *K*-means converge to the minimal cost solution?

- No! The objective is an NP-Hard problem, so we can't expect any algorithm to minimize the cost without essentially checking (near to) all assignments.
- Bad example for K_{-} means:



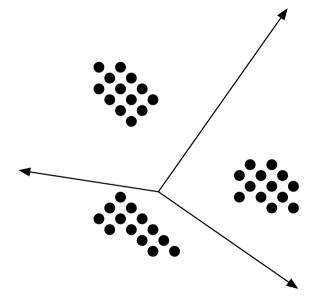
Aside: Is NP-hardness a relevant concept for ML problems?

Maybe the set of 'hard' problems may not be interesting.

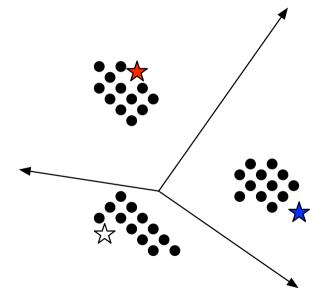
A Heuristic for Initializing K-Means

Data: unlabeled data $D = \langle \mathbf{x}_n \rangle_{n=1}^N$, number of clusters K **Result**: initial points $\langle \mu_1, \ldots, \mu_{\kappa} \rangle$ pick n uniformly at random from $\{1, \ldots, N\}$ and let $\mu_1 = \mathbf{x}_n$; for $k \in \{2, ..., K\}$ do # find the example that is furthest from all previously selected means let $n = \underset{n \in \{1,...,N\}}{\operatorname{argmax}} \left(\underset{k' \in \{1,...,k-1\}}{\min} \|\mathbf{x}_n - \boldsymbol{\mu}_{k'}\|_2^2 \right);$ let $\boldsymbol{\mu}_{k} = \mathbf{x}_{n}$; end return $\langle \boldsymbol{\mu}_1, \ldots, \boldsymbol{\mu}_K \rangle$: Algorithm 3. FURTHESTFIRST (K-MEANS++)

 $\ensuremath{\mathrm{FurthestFirst}}$ in action



 $\ensuremath{\mathrm{FurthestFirst}}$ in action



<ロト < 部 > < 言 > < 言 > こ シ < ご > こ の < で 13/19

Some Comments

- ► *K*-means usually converges very quickly in practice.
- ▶ *K*-means++ still not guaranteed to find the global optima,
 - ▶ in practice, we can get stuck. 🧲
 - ▶ often try multiple initializations (use a little randomness in *K*-means++ and run the algorithm multiple times).
 - ▶ it does have ("multiplicative") approximation guarantees.
- ► How to choose *K*?
 - Information theory criterion (see CIML).
 - Based on 'good' function value decrease on 'holdout' set.

See CIML.

Recap: Unsupervised Learning

The training dataset consists only of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

There might, or might not, be labels.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

- ► Useful for visualization.
- ► Also fight the curse of dimensionality.

Linear Dimensionality Reduction

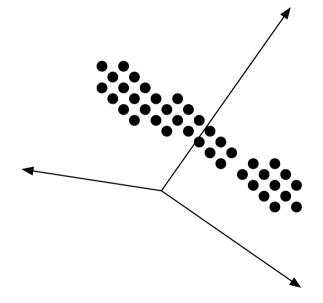
Linear Dimensionality Reduction

As before, you only have a training dataset consisting of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

Is there a way to represent each $\mathbf{x}_n \in \mathbb{R}^d$ as a lower-dimensional vector?

Why would we want to do this?

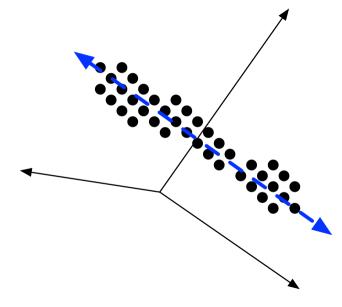
Dimension of Greatest Variance



Assume that the data are centered, i.e., that $\left(\langle \mathbf{x}_n
angle_{n=1}^N
ight) = \mathbf{0}.$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q ↔ 17/19

Dimension of Greatest Variance



Assume that the data are centered, i.e., that mean $\left(\langle \mathbf{x}_n \rangle_{n=1}^N \right) = \mathbf{0}.$

Projection into One Dimension

Let **u** be the dimension of greatest variance, and (without loss of generality) let $\|\mathbf{u}\|_2^2 = 1$.

 $p_n = \mathbf{x}_n \cdot \mathbf{u}$ is the projection of the *n*th example onto \mathbf{u} .

Since the mean of the data is 0, the mean of $\langle p_1, \ldots, p_N \rangle$ is also 0.

This implies that the variance of
$$\langle p_1,\ldots,p_N
angle$$
 is $rac{1}{N}\sum_{n=1}^N p_n^2.$

The **u** that gives the greatest variance, then, is:

$$\operatorname*{argmax}_{\mathbf{u}} \sum_{n=1}^{N} (\mathbf{x}_n \cdot \mathbf{u})^2$$

Projecting x onto a vector u

<ロト < 部 > < 言 > < 言 > こ う < ご 18 / 19

Projecting x onto an 'orthonormal' basis u

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, 65:386–408, 1958.