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PCA: continuing on...
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Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that
mean

(
〈xn〉Nn=1

)
= 0.
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Projection into One Dimension

Let u be the dimension of greatest variance, where ‖u‖2 = 1.

pn = xn · u is the projection of the nth example onto u.

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2
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Finding the Maximum-Variance Direction

argmax
u

N∑
n=1

(xn · u)2

s.t. ‖u‖2 = 1

(Why do we constrain u to have length 1?)

If we let X =


x>1
x>

...
x>N

, then we want: argmax
u

‖Xu‖2, s.t. ‖u‖2 = 1.

2-This is PCA in one dimension!

3 / 17

Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner




Linear algebra review: things to understand

I ‖x‖2 is the Euclidean norm.

I What is the dimension of Xu?

I What is i-th component of Xu?

I Also, note: ‖u‖2 = u>u

I So what is ‖Xu‖2?
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Constrained Optimization

The blue lines represent contours: all
points on a blue line have the same
objective function value.
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Deriving the Solution
Don’t panic.

argmax
u

‖Xu‖2, s.t. ‖u‖2 = 1

I The Lagrangian encoding of the problem moves the constraint into the objective:

max
u

min
λ
‖Xu‖2 − λ(‖u‖2 − 1) ⇒ min

λ
max
u
‖Xu‖2 − λ(‖u‖2 − 1)

I Gradient (first derivatives with respect to u): 2X>Xu− 2λu

I Setting equal to 0 leads to: λu = X>Xu

I You may recognize this as the definition of an eigenvector (u) and eigenvalue (λ)
for the matrix X>X.

I We take the first (largest) eigenvalue.
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Deriving the Solution: Scratch space
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Variance in Multiple Dimensions

So far, we’ve projected each xn into one dimension.

To get a second direction v, we solve the same problem again, but this time with
another constraint:

argmax
v

‖Xv‖2, s.t. ‖v‖2 = 1 and u · v = 0

(That is, we want a dimension that’s orthogonal to the u that we found earlier.)

Following the same steps we had for u, the solution will be the second eigenvector.
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“Eigenfaces”
Fig. from https://github.com/AlexOuyang/RealTimeFaceRecognition
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Principal Components Analysis

I Input: unlabeled data X = [x1|x2| · · · |xN ]>; dimensionality K < d

I Output: K-dimensional “subspace”.
I Algorithm:

1. Compute the mean µ
2. compute the covariance matrix:

Σ =
1

N

∑
i

(xi − µ)>(xi − µ)

3. let 〈λ1, . . . , λK〉 be the top K eigenvalues of Σ and 〈u1, . . . ,uK〉 be the
corresponding eigenvectors

I Let Ũ = [u1|u| · · · |uK ]
Return Ũ

You can read about many algorithms for finding eigendecompositions of a matrix.
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Alternate View of PCA: Minimizing Reconstruction Error

Assume that the data are
centered.
Find a line which minimizes the
squared reconstruction error.
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Projection and Reconstruction: the one dimensional case

I Take out mean µ:

I Find the “top” eigenvector u of the covariance matrix.

I What are your projections?

I What are your reconstructions, X̂ = [x̂1|x̂2| · · · |x̂N ]>?

I Whis is your reconstruction error?

1

N

∑
i

(xi − x̂i)
2 =??

12 / 17

Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner




Alternate View: Minimizing Reconstruction Error with K-dim subspace.

Equivalent (“dual”) formulation of PCA: find an “orthonormal basis” u1,u2, . . .uK

which minimizes the total reconstruction error on the data:

argmin
orthonormal basis:u1,u2,...uK

1

N

∑
i

(xi − Proju1,...uK
(xi))

2

Recall the projection of x onto K-orthonormal basis is:

Proju1,...uK
(x) =

K∑
j=1

(ui · x)ui

The SVD “simultaneously” finds all u1,u2, . . .uK
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Choosing K (Hyperparameter Tuning)

How do you select K for PCA?

Read CIML (similar methods for K-means)
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PCA and Clustering

There’s a unified view of both PCA and clustering.

I K-Means chooses cluster-means so that squared distances to data are small.

I PCA chooses a basis so that reconstruction error of data is small.

Both attempt to find a “simple” way to summarize the data:
fewer points or fewer dimensions.

Both could be used to create new features for supervised learning
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Loss functions
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Perceptron

A model and an algorithm, rolled into one.

Model: f(x) = sign(w · x + b), known as linear, visualized by a (hopefully) separating
hyperplane in feature-space.

Algorithm: PerceptronTrain, an error-driven, iterative updating algorithm.
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A Different View of PerceptronTrain: Optimization

“Minimize training-set error rate”:

min
w,b

1

N

N∑
n=1

Jyn · (w · x + b) ≤ 0K︸ ︷︷ ︸
εtrain≡ zero-one loss margin = y · (w · x + b)

loss
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Smooth out the Loss?
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