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PCA: continuing on...
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Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that
mean

(
〈xn〉Nn=1

)
= 0.
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Projection into One Dimension

Let u be the dimension of greatest variance, where ‖u‖2 = 1.

pn = xn · u is the projection of the nth example onto u.

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2
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Finding the Maximum-Variance Direction

argmax
u

N∑
n=1

(xn · u)2

s.t. ‖u‖2 = 1

(Why do we constrain u to have length 1?)

If we let X =


x>1
x>

...
x>N

, then we want: argmax
u

‖Xu‖2, s.t. ‖u‖2 = 1.

2-This is PCA in one dimension!

3 / 17

Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner




Linear algebra review: things to understand

I ‖x‖2 is the Euclidean norm.

I What is the dimension of Xu?

I What is i-th component of Xu?

I Also, note: ‖u‖2 = u>u

I So what is ‖Xu‖2?
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Constrained Optimization

The blue lines represent contours: all
points on a blue line have the same
objective function value.
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Deriving the Solution
Don’t panic.

argmax
u

‖Xu‖2, s.t. ‖u‖2 = 1

I The Lagrangian encoding of the problem moves the constraint into the objective:

max
u

min
λ
‖Xu‖2 − λ(‖u‖2 − 1) ⇒ min

λ
max
u
‖Xu‖2 − λ(‖u‖2 − 1)

I Gradient (first derivatives with respect to u): 2X>Xu− 2λu

I Setting equal to 0 leads to: λu = X>Xu

I You may recognize this as the definition of an eigenvector (u) and eigenvalue (λ)
for the matrix X>X.

I We take the first (largest) eigenvalue.
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Deriving the Solution: Scratch space
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Variance in Multiple Dimensions

So far, we’ve projected each xn into one dimension.

To get a second direction v, we solve the same problem again, but this time with
another constraint:

argmax
v

‖Xv‖2, s.t. ‖v‖2 = 1 and u · v = 0

(That is, we want a dimension that’s orthogonal to the u that we found earlier.)

Following the same steps we had for u, the solution will be the second eigenvector.
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“Eigenfaces”
Fig. from https://github.com/AlexOuyang/RealTimeFaceRecognition
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Principal Components Analysis

I Input: unlabeled data X = [x1|x2| · · · |xN ]>; dimensionality K < d

I Output: K-dimensional “subspace”.
I Algorithm:

1. Compute the mean µ
2. compute the covariance matrix:

Σ =
1

N

∑
i

(xi − µ)>(xi − µ)

3. let 〈λ1, . . . , λK〉 be the top K eigenvalues of Σ and 〈u1, . . . ,uK〉 be the
corresponding eigenvectors

I Let Ũ = [u1|u| · · · |uK ]
Return Ũ

You can read about many algorithms for finding eigendecompositions of a matrix.
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Alternate View of PCA: Minimizing Reconstruction Error

Assume that the data are
centered.
Find a line which minimizes the
squared reconstruction error.
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Projection and Reconstruction: the one dimensional case

I Take out mean µ:

I Find the “top” eigenvector u of the covariance matrix.

I What are your projections?

I What are your reconstructions, X̂ = [x̂1|x̂2| · · · |x̂N ]>?

I Whis is your reconstruction error?

1

N

∑
i

(xi − x̂i)
2 =??
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Alternate View: Minimizing Reconstruction Error with K-dim subspace.

Equivalent (“dual”) formulation of PCA: find an “orthonormal basis” u1,u2, . . .uK

which minimizes the total reconstruction error on the data:

argmin
orthonormal basis:u1,u2,...uK

1

N

∑
i

(xi − Proju1,...uK
(xi))

2

Recall the projection of x onto K-orthonormal basis is:

Proju1,...uK
(x) =

K∑
j=1

(ui · x)ui

The SVD “simultaneously” finds all u1,u2, . . .uK
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Choosing K (Hyperparameter Tuning)

How do you select K for PCA?

Read CIML (similar methods for K-means)
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PCA and Clustering

There’s a unified view of both PCA and clustering.

I K-Means chooses cluster-means so that squared distances to data are small.

I PCA chooses a basis so that reconstruction error of data is small.

Both attempt to find a “simple” way to summarize the data:
fewer points or fewer dimensions.

Both could be used to create new features for supervised learning
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Loss functions
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Perceptron

A model and an algorithm, rolled into one.

Model: f(x) = sign(w · x + b), known as linear, visualized by a (hopefully) separating
hyperplane in feature-space.

Algorithm: PerceptronTrain, an error-driven, iterative updating algorithm.
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A Different View of PerceptronTrain: Optimization

“Minimize training-set error rate”:

min
w,b

1

N

N∑
n=1

Jyn · (w · x + b) ≤ 0K︸ ︷︷ ︸
εtrain≡ zero-one loss margin = y · (w · x + b)

loss
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Smooth out the Loss?
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