Machine Learning (CSE 446): Unsupervised Learning: Linear Dimensionality Reduction

Sham M Kakade

© 2018

University of Washington cse446-staff@cs.washington.edu

< □ > < □ > < □ > < Ξ > < Ξ > Ξ
< ○ Q <>
1/13

Announcements

- ▶ Qz section: margins, SVD
- Today: Linear diemsionality reduction

Review

Margins, precisely

A linearly separable dataset $D = \langle (\mathbf{x}_n, y_n) \rangle_{n=1}^N$. Assume scaling $||x_n|| \leq 1$.

► Margin of a **particular** w:

$$\operatorname{margin}(\mathbf{w}, D) := \begin{cases} -\infty & \text{if } \mathbf{w} \text{ does not separate } D\\ \min_{n} y_{n} \left(\mathbf{w} \cdot \mathbf{x}_{n} \right) \end{cases}$$

• Geometric Margin (or "maximal" margin): (HW uses this)

$$\gamma = \text{GeometricMargin}(\mathbf{w}, D) := \sup_{\|\mathbf{w}\|=1} \operatorname{margin}(\mathbf{w}, D)$$

• Smallest norm $\|\mathbf{w}_*\|$ at margin 1:

$$\|\mathbf{w}_*\| := \inf_{\mathbf{w} \text{ such that } \max(\mathbf{w}, D) = 1} \|\mathbf{w}\|$$

- It holds that $\|\mathbf{w}_*\| = 1/\gamma$.
- The perceptron algorithm makes at most $\|\mathbf{w}_*\|^2$ (or, equivalently, $1/\gamma^2$) mistakes.

Today

Linear Dimensionality Reduction

As before, you only have a training dataset consisting of $\langle \mathbf{x}_n \rangle_{n=1}^N$.

Is there a way to represent each $\mathbf{x}_n \in \mathbb{R}^d$ as a lower-dimensional vector?

(Why would we want to do this?)

Dimension of Greatest Variance

Assume that the data are centered, i.e., that $(\langle \mathbf{x}_n \rangle_{n=1}^N) = \mathbf{0}.$

Dimension of Greatest Variance

Assume that the data are centered, i.e., that $(\langle \mathbf{x}_n \rangle_{n=1}^N) = \mathbf{0}.$

Projection into One Dimension

Let \mathbf{u} be the dimension of greatest variance, and (without loss of generality) let $\|\mathbf{u}\|_2^2 = 1$.

 $p_n = \mathbf{x}_n \cdot \mathbf{u}$ is the projection of the *n*th example onto \mathbf{u} .

Since the mean of the data is 0, the mean of $\langle p_1, \ldots, p_N \rangle$ is also 0.

Projection into One Dimension

Let **u** be the dimension of greatest variance, and (without loss of generality) let $\|\mathbf{u}\|_2^2 = 1$.

 $p_n = \mathbf{x}_n \cdot \mathbf{u}$ is the projection of the *n*th example onto \mathbf{u} .

Since the mean of the data is 0, the mean of $\langle p_1, \ldots, p_N \rangle$ is also 0.

This implies that the variance of $\langle p_1, \ldots, p_N \rangle$ is $\frac{1}{N} \sum_{n=1}^N p_n^2$.

The **u** that gives the greatest variance, then, is:

$$\underset{\mathbf{u}}{\operatorname{argmax}} \sum_{n=1}^{N} \left(\mathbf{x}_{n} \cdot \mathbf{u} \right)^{2}$$

(Where did N go?)

Finding the Maximum-Variance Direction

$$\operatorname{argmax}_{\mathbf{u}} \sum_{n=1}^{N} (\mathbf{x}_{n} \cdot \mathbf{u})^{2}$$
s.t. $\|\mathbf{u}\|_{2}^{2} = 1$

(Why do we constrain **u** to have length 1?)

If we let
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_N^\top \end{bmatrix}$$
, then we want: $\underset{\mathbf{u}}{\operatorname{argmax}} \|\mathbf{X}\mathbf{u}\|_2^2$, s.t. $\|\mathbf{u}\|_2^2 = 1$.
2-This is PCA in one dimension!

<ロト < 部ト < 言ト < 言ト こ の Q (~ 6/13

Constrained Optimization

The blue lines represent *contours*: all points on a blue line have the same objective function value.

Constrained Optimization

The blue lines represent *contours*: all points on a blue line have the same objective function value. The red circle is all points with a norm of 1. It represents a constraint like the one we have in the maximum-variance projection problem.

Deriving the Solution

Don't panic.

$$\underset{\mathbf{u}}{\operatorname{argmax}} \|\mathbf{X}\mathbf{u}\|_2^2, \text{ s.t. } \|\mathbf{u}\|_2^2 = 1$$

► The Lagrangian encoding of the problem moves the constraint into the objective:

$$\max_{\mathbf{u}} \min_{\boldsymbol{\lambda}} \|\mathbf{X}\mathbf{u}\|_{2}^{2} - \boldsymbol{\lambda}(\|\mathbf{u}\|_{2}^{2} - 1) \quad \Rightarrow \quad \min_{\boldsymbol{\lambda}} \max_{\mathbf{u}} \|\mathbf{X}\mathbf{u}\|_{2}^{2} - \boldsymbol{\lambda}(\|\mathbf{u}\|_{2}^{2} - 1)$$

Deriving the Solution

Don't panic.

$$\underset{\mathbf{u}}{\operatorname{argmax}} \|\mathbf{X}\mathbf{u}\|_2^2, \text{ s.t. } \|\mathbf{u}\|_2^2 = 1$$

► The Lagrangian encoding of the problem moves the constraint into the objective:

$$\max_{\mathbf{u}} \min_{\boldsymbol{\lambda}} \|\mathbf{X}\mathbf{u}\|_2^2 - \lambda(\|\mathbf{u}\|_2^2 - 1) \quad \Rightarrow \quad \min_{\boldsymbol{\lambda}} \max_{\mathbf{u}} \|\mathbf{X}\mathbf{u}\|_2^2 - \lambda(\|\mathbf{u}\|_2^2 - 1)$$

- Gradient (first derivatives with respect to **u**): $2\mathbf{X}^{\top}\mathbf{X}\mathbf{u} 2\lambda\mathbf{u}$
- Setting equal to 0 leads to: $\lambda \mathbf{u} = \mathbf{X}^{\top} \mathbf{X} \mathbf{u}$
- You may recognize this as the definition of an eigenvector (u) and eigenvalue (λ) for the matrix X^TX.
- We take the first (largest) eigenvalue.

Projecting into Multiple Dimensions

So far, we've projected each \mathbf{x}_n into one dimension.

To get a second projection \mathbf{v} , we solve the same problem again, but this time with another constraint:

$$\underset{\mathbf{v}}{\operatorname{argmax}} \|\mathbf{X}\mathbf{v}\|_{2}^{2}, \text{ s.t. } \|\mathbf{v}\|_{2}^{2} = 1 \text{ and } \overline{\mathbf{u} \cdot \mathbf{v} = 0}$$

(That is, we want a dimension that's orthogonal to the ${f u}$ that we found earlier.)

Following the same steps we had for \mathbf{u} , we can show that the solution will be the *second* eigenvector.

"Eigenfaces"

Fig. from https://github.com/AlexOuyang/RealTimeFaceRecognition

Principal Components Analysis

Data: unlabeled data with mean **0**, $\mathbf{X} = [\mathbf{x}_1 | \mathbf{x}_2 | \cdots | \mathbf{x}_N]^\top$, and dimensionality K < d **Result**: *K*-dimensional projection of **X** let $\langle \lambda_1, \ldots, \lambda_K \rangle$ be the top *K* eigenvalues of $\mathbf{X}^\top \mathbf{X}$ and $\langle \mathbf{u}_1, \ldots, \mathbf{u}_K \rangle$ be the corresponding eigenvectors; let $\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_K]$; return **XU**;

Algorithm 1: PCA

On your own time, you can read up about many algorithms for finding eigenstuff of a matrix.

Alternate View of PCA

Think of $\mathbf{p}_n = \mathbf{x}_n \mathbf{U}$ as a new, *K*-dimensional representation of \mathbf{x}_n .

This means that $\mathbf{p}_n \mathbf{U}^\top \approx \mathbf{x}_n$. The closer these vectors are, the lower our reconstruction error, $\|\mathbf{x}_n - \mathbf{p}_n \mathbf{U}^\top\|_2^2$.

We could have derived PCA by saying that our goal is to minimize the total reconstruction error on the data:

$$\min_{\mathbf{U}} \left\| \mathbf{X} - \mathbf{X} \mathbf{U} \mathbf{U}^{\top} \right\|_{2}^{2}$$

s.t. $\mathbf{U}^{\top} \mathbf{U} = \mathbf{1}$

Choosing K (Hyperparameter Tuning)

To select K for PCA, you can use the same criteria we discussed for K-Means (BIC and AIC).

PCA and Clustering

There's a unified view of both PCA and clustering.

- ► K-Means chooses cluster-means so that squared distances to data are small.
- ▶ PCA chooses projections so that reconstruction error of data is small.

Both are trying to find a "simple" way to summarize the data; fewer points, or fewer dimensions.

Both could be used to create new features for supervised learning