Linear Dimensionality Reduction

As before, you only have a training dataset consisting of \(\{x_n\}_{n=1}^N \).
As before, you only have a training dataset consisting of $\langle x_n \rangle_{n=1}^{N}$.

Is there a way to represent each $x_n \in \mathbb{R}^d$ as a lower-dimensional vector?
Linear Dimensionality Reduction

As before, you only have a training dataset consisting of \(\{x_n\}_{n=1}^N \).

Is there a way to represent each \(x_n \in \mathbb{R}^d \) as a lower-dimensional vector?

(Why would we want to do this?)
Dimension of Greatest Variance

Assume that the data are centered, i.e., that $\text{mean} \left(\langle x_n \rangle_{n=1}^{N} \right) = 0$.
Dimension of Greatest Variance

Assume that the data are *centered*, i.e., that
\[
\text{mean } \left(\langle x_n \rangle_{n=1}^N \right) = 0.
\]
Projection into One Dimension

Let \(u \) be the dimension of greatest variance, and (without loss of generality) let \(\|u\|_2^2 = 1 \).

\(p_n = x_n \cdot u \) is the projection of the \(n \)th example onto \(u \).

(This should remind you a little bit of the perceptron's activation, \(w \cdot x_n + b \).)

Since the mean of the data is 0, the mean of \(\langle p_1, \ldots, p_N \rangle \) is also 0.

This implies that the variance of \(\langle p_1, \ldots, p_N \rangle \) is \(\frac{1}{N} \sum_{n=1}^{N} p_n^2 \).

The \(u \) that gives the greatest variance, then, is:

\[
\text{argmax} \quad u \sum_{n=1}^{N} (x_n \cdot u)^2
\]

(Where did \(N \) go?)
Projection into One Dimension

Let \(\mathbf{u} \) be the dimension of greatest variance, and (without loss of generality) let \(\| \mathbf{u} \|_2^2 = 1 \).

\(p_n = \mathbf{x}_n \cdot \mathbf{u} \) is the projection of the \(n \)th example onto \(\mathbf{u} \).

(This should remind you a little bit of the perceptron’s activation, \(\mathbf{w} \cdot \mathbf{x}_n + b \).)
Projection into One Dimension

Let \(u \) be the dimension of greatest variance, and (without loss of generality) let \(\|u\|_2^2 = 1 \).

\(p_n = \mathbf{x}_n \cdot \mathbf{u} \) is the projection of the \(n \)th example onto \(u \).

(This should remind you a little bit of the perceptron’s activation, \(\mathbf{w} \cdot \mathbf{x}_n + b \).)

Since the mean of the data is 0, the mean of \(\langle p_1, \ldots, p_N \rangle \) is also 0.
Let \mathbf{u} be the dimension of greatest variance, and (without loss of generality) let $\|\mathbf{u}\|_2^2 = 1$.

$p_n = x_n \cdot \mathbf{u}$ is the projection of the nth example onto \mathbf{u}.

(This should remind you a little bit of the perceptron’s activation, $\mathbf{w} \cdot x_n + b$.)

Since the mean of the data is 0, the mean of $\langle p_1, \ldots, p_N \rangle$ is also 0.

This implies that the variance of $\langle p_1, \ldots, p_N \rangle$ is $\frac{1}{N} \sum_{n=1}^{N} p_n^2$.

Projection into One Dimension

Let \mathbf{u} be the dimension of greatest variance, and (without loss of generality) let $\|\mathbf{u}\|_2^2 = 1$.

$p_n = \mathbf{x}_n \cdot \mathbf{u}$ is the projection of the nth example onto \mathbf{u}.
(This should remind you a little bit of the perceptron’s activation, $\mathbf{w} \cdot \mathbf{x}_n + b$.)

Since the mean of the data is 0, the mean of $\langle p_1, \ldots, p_N \rangle$ is also 0.

This implies that the variance of $\langle p_1, \ldots, p_N \rangle$ is $\frac{1}{N} \sum_{n=1}^{N} p_n^2$.

The \mathbf{u} that gives the greatest variance, then, is:

$$\text{argmax}_{\mathbf{u}} \sum_{n=1}^{N} (\mathbf{x}_n \cdot \mathbf{u})^2$$
Projection into One Dimension

Let \(\mathbf{u} \) be the dimension of greatest variance, and (without loss of generality) let \(\|\mathbf{u}\|_2^2 = 1 \).

\(p_n = \mathbf{x}_n \cdot \mathbf{u} \) is the projection of the \(n \)th example onto \(\mathbf{u} \). (This should remind you a little bit of the perceptron’s activation, \(\mathbf{w} \cdot \mathbf{x}_n + b \).)

Since the mean of the data is \(0 \), the mean of \(\langle p_1, \ldots, p_N \rangle \) is also \(0 \).

This implies that the variance of \(\langle p_1, \ldots, p_N \rangle \) is \(\frac{1}{N} \sum_{n=1}^{N} p_n^2 \).

The \(\mathbf{u} \) that gives the greatest variance, then, is:

\[
\argmax_{\mathbf{u}} \sum_{n=1}^{N} (\mathbf{x}_n \cdot \mathbf{u})^2
\]

(Where did \(N \) go?)
Finding the Maximum-Variance Direction

$$\arg\max_u \sum_{n=1}^{N} (x_n \cdot u)^2$$

s.t. $\|u\|_2^2 = 1$

(If we didn’t constrain u to have length 1, it could increase the objective arbitrarily in a way that has nothing to do with variance in the data!)
Finding the Maximum-Variance Direction

\[\text{argmax}_u \sum_{n=1}^{N} (x_n \cdot u)^2 \]
\[\text{s.t. } \|u\|_2^2 = 1 \]

(If we didn’t constrain \(u \) to have length 1, it could increase the objective arbitrarily in a way that has nothing to do with variance in the data!)

If we let \(X = \begin{bmatrix} x_1^\top \\ x_2^\top \\ \vdots \\ x_N^\top \end{bmatrix} \), then we want: \(\text{argmax}_u \|Xu\|_2^2 \), s.t. \(\|u\|_2^2 = 1 \).
Constrained Optimization

The blue lines represent *isobars*: all points on a blue line have the same objective function value.
Constrained Optimization

The blue lines represent *isobars*: all points on a blue line have the same objective function value. The red circle is all points with a norm of 1. It represents a constraint like the one we have in the maximum-variance projection problem.
Deriving the Solution

Don’t panic.

\[
\begin{align*}
\argmax_u \| Xu \|^2_2, \text{ s.t. } \| u \|^2_2 &= 1
\end{align*}
\]
Deriving the Solution

Don’t panic.

\[
\arg\max_u \|Xu\|_2^2, \text{ s.t. } \|u\|_2^2 = 1
\]

- The Lagrangian encoding of the problem moves the constraint into the objective:

\[
\max_u \min_\lambda \|Xu\|_2^2 - \lambda(\|u\|_2^2 - 1) \quad \Rightarrow \quad \min_\lambda \max_u \|Xu\|_2^2 - \lambda(\|u\|_2^2 - 1)
\]
Deriving the Solution

Don’t panic.

\[
\arg\max_u \|Xu\|_2^2, \text{ s.t. } \|u\|_2^2 = 1
\]

▶ The Lagrangian encoding of the problem moves the constraint into the objective:

\[
\max_u \min_\lambda \|Xu\|_2^2 - \lambda(\|u\|_2^2 - 1) \quad \Rightarrow \quad \min_\lambda \max_u \|Xu\|_2^2 - \lambda(\|u\|_2^2 - 1)
\]

▶ Gradient (first derivatives with respect to \(u\)): \(2X^\top Xu - 2\lambda u\)
Deriving the Solution
Don’t panic.

\[
\arg\max_u \|Xu\|_2^2, \text{ s.t. } \|u\|_2^2 = 1
\]

- The Lagrangian encoding of the problem moves the constraint into the objective:

\[
\max_u \min_\lambda \|Xu\|_2^2 - \lambda(\|u\|_2^2 - 1) \quad \Rightarrow \quad \min_\lambda \max_u \|Xu\|_2^2 - \lambda(\|u\|_2^2 - 1)
\]

- Gradient (first derivatives with respect to \(u\)): \(2X^\top Xu - 2\lambda u\)
- Setting equal to 0 leads to: \(\lambda u = X^\top Xu\)
Deriving the Solution

Don’t panic.

\[
\arg\max_u \|Xu\|_2^2, \text{ s.t. } \|u\|_2^2 = 1
\]

- The Lagrangian encoding of the problem moves the constraint into the objective:

\[
\max_u \min_\lambda \|Xu\|_2^2 - \lambda(\|u\|_2^2 - 1) \Rightarrow \min_\lambda \max_u \|Xu\|_2^2 - \lambda(\|u\|_2^2 - 1)
\]

- Gradient (first derivatives with respect to \(u\)): \(2X^\top X u - 2\lambda u\)
- Setting equal to 0 leads to: \(\lambda u = X^\top X u\)
- You may recognize this as the definition of an eigenvector \((u)\) and eigenvalue \((\lambda)\) for the matrix \(X^\top X\).
Deriving the Solution

Don’t panic.

\[
\arg\max_u \|Xu\|_2^2, \text{ s.t. } \|u\|_2^2 = 1
\]

- The Lagrangian encoding of the problem moves the constraint into the objective:

\[
\max_u \min_\lambda \|Xu\|_2^2 - \lambda(\|u\|_2^2 - 1) \Rightarrow \min_\lambda \max_u \|Xu\|_2^2 - \lambda(\|u\|_2^2 - 1)
\]

- Gradient (first derivatives with respect to \(u\)): \(2X^\top Xu - 2\lambda u\)
- Setting equal to 0 leads to: \(\lambda u = X^\top Xu\)
- You may recognize this as the definition of an eigenvector (\(u\)) and eigenvalue (\(\lambda\)) for the matrix \(X^\top X\).
- We take the first (largest) eigenvalue.
Projecting into Multiple Dimensions

So far, we’ve projected each x_n into one dimension.
Projecting into Multiple Dimensions

So far, we’ve projected each x_n into one dimension.

To get a second projection v, we solve the same problem again, but this time with another constraint:

$$\arg\max_v \|Xv\|_2^2, \text{ s.t. } \|v\|_2^2 = 1 \text{ and } u \cdot v = 0$$

(That is, we want a dimension that’s orthogonal to the u that we found earlier.)
Projecting into Multiple Dimensions

So far, we’ve projected each x_n into one dimension.

To get a second projection v, we solve the same problem again, but this time with another constraint:

$$\arg\max_v \|Xv\|_2^2, \text{ s.t. } \|v\|_2^2 = 1 \text{ and } u \cdot v = 0$$

(That is, we want a dimension that’s orthogonal to the u that we found earlier.)

Following the same steps we had for u, we can show that the solution will be the second eigenvector.
“Eigenfaces”

Fig. from https://github.com/AlexOuyang/RealTimeFaceRecognition
Principal Components Analysis

Data: unlabeled data with mean 0, \(X = [x_1 | x_2 | \cdots | x_N]^\top \), and dimensionality \(K < d \)

Result: \(K \)-dimensional projection of \(X \)

let \(\langle \lambda_1, \ldots, \lambda_K \rangle \) be the top \(K \) eigenvalues of \(X^\top X \)

and \(\langle u_1, \ldots, u_K \rangle \) be the corresponding eigenvectors;

let \(U = [u_1 | u_2 | \cdots | u_K] \);

return \(XU \);

Algorithm 1: PCA
Principal Components Analysis

Data: unlabeled data with mean 0, \(X = [x_1 | x_2 | \cdots | x_N]^\top \), and dimensionality \(K < d \)

Result: \(K \)-dimensional projection of \(X \)

let \(\langle \lambda_1, \ldots, \lambda_K \rangle \) be the top \(K \) eigenvalues of \(X^\top X \)

and \(\langle u_1, \ldots, u_K \rangle \) be the corresponding eigenvectors;

let \(U = [u_1 | u_2 | \cdots | u_K] \);

return \(XU \);

Algorithm 2: PCA

On your own time, you can read up about many algorithms for finding eigenstuff of a matrix.
Alternate View of PCA

Think of \(p_n = x_n U \) as a new, \(K \)-dimensional representation of \(x_n \).
Alternate View of PCA

Think of \(p_n = x_n U \) as a new, \(K \)-dimensional representation of \(x_n \).

This means that \(p_n U^T \approx x_n \). The closer these vectors are, the lower our reconstruction error, \(\|x_n - p_n U^T\|_2^2 \).
Alternate View of PCA

Think of $p_n = x_n U$ as a new, K-dimensional representation of x_n.

This means that $p_n U^\top \approx x_n$. The closer these vectors are, the lower our reconstruction error, $\|x_n - p_n U^\top\|^2$.

We could have derived PCA by saying that our goal is to minimize the total reconstruction error on the data:

$$\min_U \|X - XUU^\top\|^2_2$$

s.t. $U^\top U = 1$
To select K for PCA, you can use the same criteria we discussed for K-Means (BIC and AIC).
PCA and Clustering

There’s a unified view of both PCA and clustering.

- K-Means chooses cluster-means so that squared distances to data are small.
- PCA chooses projections so that reconstruction error of data is small.
PCA and Clustering

There’s a unified view of both PCA and clustering.

- K-Means chooses cluster-means so that squared distances to data are small.
- PCA chooses projections so that reconstruction error of data is small.

Both are trying to find a “simple” way to summarize the data; fewer points, or fewer dimensions.
PCA and Clustering

There’s a unified view of both PCA and clustering.

- *K*-Means chooses cluster-means so that squared distances to data are small.
- PCA chooses projections so that reconstruction error of data is small.

Both are trying to find a “simple” way to summarize the data; fewer points, or fewer dimensions.

Both could be used to create new features for supervised learning!