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Announcements

» Qz section: margins, SVD

> Today:
Linear diemsionality reduction
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Review
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Margins, precisely
A linearly separable dataset D = ((x,,,yn))2_;. Assume scaling ||z, || < 1.

» Margin of a particular w:

in(w, D) —00 if w does not separate D
margin(w, D) := )
5 ming, y, (W - Xp,)

v

Geometric Margin (or “maximal” margin): (HW uses this)

~v = GeometricMargin(w, D) := sup margin(w, D)

[[wll=1

v

Smallest norm ||w.|| at margin 1:

[wel| = inf [w
w such that margin(w,D)=1

v

It holds that ||w.|| = 1/7.
The perceptron algorithm makes at most ||w.,

v

I

(or, equivalently, 1/42) mistakes.
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Today
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Linear Dimensionality Reduction

As before, you only have a training dataset consisting of (x,)"_;.

Is there a way to represent each x,, € R? as a lower-dimensional vector?

(Why would we want to do this?)
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Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that

mean ((x,)2_;) = 0.
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Dimension of Greatest Variance

Assume that the data are
centered,

i.e., that

mean ((x,)2_;) = 0.
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Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
[uf3 = 1.

Pn = X, - U is the projection of the nth example onto u.

Since the mean of the data is 0, the mean of (p1,...,pn) is also 0.
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Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
[uf3 = 1.

Pn = X, - U is the projection of the nth example onto u.

Since the mean of the data is 0, the mean of (p1,...,pn) is also 0.
| N
. . . . 2
This implies that the variance of (p1,...,pn) is N zzlpn.
n=

The u that gives the greatest variance, then, is:

N
argmax Z (%, - u)?

u n=1

(Where did N go?)
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Finding the Maximum-Variance Direction

N
2
argmax Xnp - u
a3 (s )

n=1

st [jul3 =1
(Why do we constrain u to have length 17)

x|
X3
If we let X = ~ |, then we want: argmax ||Xul|3, s.t. [[u|3 = 1.
. u

Xy
2-This is PCA in one dimension!
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Constrained Optimization

q

\

The blue lines represent contours: all
points on a blue line have the same
objective function value.
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Constrained Optimization

\

The blue lines represent contours: all
points on a blue line have the same
objective function value.

The red circle is all points with a norm of
1. It represents a constraint like the one we
have in the maximum-variance projection
problem.
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Deriving the Solution

Don’t panic.
2 2 _
argmax || Xull3, s.t. [Jull; =1
u

» The Lagrangian encoding of the problem moves the constraint into the objective:

maxmin [ Xu[3 = A3 = 1) = minmax||Xul3 - A(ju]3 - 1)

13



Deriving the Solution

Don’t panic.

argmax || Xul|3, s.t. [uf3 =1
u

v

The Lagrangian encoding of the problem moves the constraint into the objective:

max min IXull = A([ullz -1) = min max X3 = A(l[ull3 — 1)

Gradient (first derivatives with respect to u): 2X ' Xu — 2\u
Setting equal to 0 leads to: A\u = X"Xu

v

v

v

You may recognize this as the definition of an eigenvector (u) and eigenvalue (\)
for the matrix X X.

We take the first (largest) eigenvalue.

v
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Projecting into Multiple Dimensions

So far, we've projected each x,, into one dimension.

To get a second projection v, we solve the same problem again, but this time with
another constraint:

argmax [ X3, st. [v[3 =1 and
A%

(That is, we want a dimension that’s orthogonal to the u that we found earlier.)

Following the same steps we had for u, we can show that the solution will be the
second eigenvector.
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“Eigenfaces”

eigenface 0

Fig. from https://github.com/AlexOuyang/RealTimeFaceRecognition

eigenface 1

eigenface 2

eigenface 3
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eigenface 8

eigenface 9

eigenface 10

eigenface 11
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https://github.com/AlexOuyang/RealTimeFaceRecognition

Principal Components Analysis

Data: unlabeled data with mean 0, X = [x|xa| - - |xn] "
Result: K-dimensional projection of X

let (A1,..., k) be the top K eigenvalues of XX

, and dimensionality K < d

and (uy,...,ux) be the corresponding eigenvectors;
let U = [ui|ug|- - |ukl];
return XU;

Algorithm 1: PCA

On your own time, you can read up about many algorithms for finding eigenstuff of a
matrix.
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Alternate View of PCA

Think of p, = x,U as a new, K-dimensional representation of x,,.

This means that anT ~ X,. |he closer these vectors are, the lower our
reconstruction error, ||x, — p,U"|3.

We could have derived PCA by saying that our goal is to minimize the total
reconstruction error on the data:

2
minHX—XUUTH
18] 2

st. U'U=1
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Choosing K (Hyperparameter Tuning)

To select K for PCA, you can use the same criteria we discussed for K-Means (BIC
and AIC).
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PCA and Clustering

There's a unified view of both PCA and clustering.
» K-Means chooses cluster-means so that squared distances to data are small.
» PCA chooses projections so that reconstruction error of data is small.

Both are trying to find a “simple” way to summarize the data; fewer points, or fewer
dimensions.

Both could be used to create new features for supervised learning
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