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Announcements

I Qz section: margins, SVD

I Today:
Linear diemsionality reduction
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Review
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Margins, precisely
A linearly separable dataset D = 〈(xn, yn)〉Nn=1. Assume scaling ‖xn‖ ≤ 1.

I Margin of a particular w:

margin(w, D) :=

{
−∞ if w does not separate D

minn yn (w · xn)

I Geometric Margin (or “maximal” margin): (HW uses this)

γ = GeometricMargin(w, D) := sup
‖w‖=1

margin(w, D)

I Smallest norm ‖w∗‖ at margin 1:

‖w∗‖ := inf
w such that margin(w,D)=1

‖w‖

I It holds that ‖w∗‖ = 1/γ.

I The perceptron algorithm makes at most ‖w∗‖2 (or, equivalently, 1/γ2) mistakes.
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Today
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Linear Dimensionality Reduction

As before, you only have a training dataset consisting of 〈xn〉Nn=1.

Is there a way to represent each xn ∈ Rd as a lower-dimensional vector?

(Why would we want to do this?)
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Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that
mean

(
〈xn〉Nn=1

)
= 0.
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Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pn = xn · u is the projection of the nth example onto u.

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2

(Where did N go?)
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Finding the Maximum-Variance Direction

argmax
u

N∑
n=1

(xn · u)2

s.t. ‖u‖22 = 1

(Why do we constrain u to have length 1?)

If we let X =


x>1
x>2

...
x>N

, then we want: argmax
u

‖Xu‖22, s.t. ‖u‖22 = 1.

2-This is PCA in one dimension!
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Constrained Optimization

The blue lines represent contours: all
points on a blue line have the same
objective function value.
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Constrained Optimization

The blue lines represent contours: all
points on a blue line have the same
objective function value.
The red circle is all points with a norm of
1. It represents a constraint like the one we
have in the maximum-variance projection
problem.
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Deriving the Solution
Don’t panic.

argmax
u

‖Xu‖22, s.t. ‖u‖22 = 1

I The Lagrangian encoding of the problem moves the constraint into the objective:

max
u

min
λ
‖Xu‖22 − λ(‖u‖22 − 1) ⇒ min

λ
max
u
‖Xu‖22 − λ(‖u‖22 − 1)

I Gradient (first derivatives with respect to u): 2X>Xu− 2λu

I Setting equal to 0 leads to: λu = X>Xu

I You may recognize this as the definition of an eigenvector (u) and eigenvalue (λ)
for the matrix X>X.

I We take the first (largest) eigenvalue.
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Projecting into Multiple Dimensions

So far, we’ve projected each xn into one dimension.

To get a second projection v, we solve the same problem again, but this time with
another constraint:

argmax
v

‖Xv‖22, s.t. ‖v‖22 = 1 and u · v = 0

(That is, we want a dimension that’s orthogonal to the u that we found earlier.)

Following the same steps we had for u, we can show that the solution will be the
second eigenvector.
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“Eigenfaces”
Fig. from https://github.com/AlexOuyang/RealTimeFaceRecognition

10 / 13

https://github.com/AlexOuyang/RealTimeFaceRecognition


Principal Components Analysis

Data: unlabeled data with mean 0, X = [x1|x2| · · · |xN ]>, and dimensionality K < d
Result: K-dimensional projection of X
let 〈λ1, . . . , λK〉 be the top K eigenvalues of X>X

and 〈u1, . . . ,uK〉 be the corresponding eigenvectors;
let U = [u1|u2| · · · |uK ];
return XU;

Algorithm 1: PCA

On your own time, you can read up about many algorithms for finding eigenstuff of a
matrix.
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Alternate View of PCA

Think of pn = xnU as a new, K-dimensional representation of xn.

This means that pnU
> ≈ xn. The closer these vectors are, the lower our

reconstruction error, ‖xn − pnU
>‖22.

We could have derived PCA by saying that our goal is to minimize the total
reconstruction error on the data:

min
U

∥∥∥X−XUU>
∥∥∥2
2

s.t. U>U = 1
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Choosing K (Hyperparameter Tuning)

To select K for PCA, you can use the same criteria we discussed for K-Means (BIC
and AIC).
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PCA and Clustering

There’s a unified view of both PCA and clustering.

I K-Means chooses cluster-means so that squared distances to data are small.

I PCA chooses projections so that reconstruction error of data is small.

Both are trying to find a “simple” way to summarize the data; fewer points, or fewer
dimensions.

Both could be used to create new features for supervised learning

13 / 13


