
Machine Learning (CSE 446):
Unsupervised Learning

Sham M Kakade
c© 2018

University of Washington
cse446-staff@cs.washington.edu

1 / 19

Announcements

I HW2 posted. Due Feb 1.

I It is long. Start this week!

I Today:
Review: the perceptron algo New: Unsupervised learning

1 / 19

Review

1 / 19

Neuron-Inspired Classifier

f(x) = sign (w · x+ b)

remembering that: w · x =

d∑
j=1

w[j] · x[j]

Learning requires us to set the weights w and the bias b.
Scalings: Note that assuming ‖x‖ ≤ 1 doesn’t change anything. Even with this
scaling, the scale of ‖w‖ is arbitrary.

1 / 19

Perceptron Learning Algorithm
Data: D = 〈(xn, yn)〉Nn=1, number of epochs E
Result: weights w and bias b
initialize: w = 0 and b = 0;
for e ∈ {1, . . . , E} do

for n ∈ {1, . . . , N}, in random order do
predict
ŷ = sign (w · xn + b);
if ŷ 6= yn then

update
w← w + yn · xn;
b← b+ yn;

end

end

end
return w, b

Algorithm 1: PerceptronTrain

1 / 19

Linear Decision Boundary

w·x + b = 0

activation = w·x + b

1 / 19

When does the perceptron not converge?

1 / 19

Linear Separability

A dataset D = 〈(xn, yn)〉Nn=1 is linearly separable if there exists some linear classifier
(defined by w, b) such that, for all n, yn = sign (w · xn + b).

If data are separable, (without loss of generality) can scale so that:

I “margin at 1”, can assume for all (x, y)

y (w∗ · x) ≥ 1

(let w∗ be smallest norm vector with margin 1).

I CIML: assumes ‖w∗‖ is unit length and scales the ”1” above.

2 / 19

Linear Separability and the Geometric Margin

3 / 19

Perceptron Convergence
Due to Rosenblatt (1958).

Theorem: Suppose data are scaled so that ‖xi‖2 ≤ 1.
Assume D is linearly separable, and let be w∗ be a separator with “margin 1”.
Then the perceptron algorithm will converge in at most ‖w∗‖2 epochs.

I Let wt be the param at “iteration” t; w0 = 0

I “A Mistake Lemma”: At iteration t

If we do not make a mistake, ‖wt+1 −w∗‖2 = ‖wt −w∗‖2

If we do make a mistake, ‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 − 1

I The theorem directly follows from this lemma. Why?

4 / 19

Today

4 / 19

Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be labels.

Two simple unsupervised learning methods:

I cluster into K groups.

I project your data into less dimensions

I Today: look at these methods as objective function minimization.

5 / 19

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

6 / 19

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

The stars are cluster centers,
randomly assigned at first.

6 / 19

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Assign each example to its nearest
cluster center.

6 / 19

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Recalculate cluster centers to
reflect their respective examples.

6 / 19

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Assign each example to its nearest
cluster center.

6 / 19

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Recalculate cluster centers to
reflect their respective examples.

6 / 19

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Assign each example to its nearest
cluster center.

6 / 19

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

Recalculate cluster centers to
reflect their respective examples.

6 / 19

K-Means: An Iterative Clustering Algorithm
(Review from last week.)

At this point, nothing will change;
we have converged.

6 / 19

K-Means Clustering
Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: cluster assignment zn for each xn

initialize each µk to a random location, for k ∈ {1, . . . ,K};
do

for n ∈ {1, . . . , N} do
assign each data point to its nearest cluster-center let
zn = argmink ‖µk − xn‖2;

end
for k ∈ {1, . . . ,K} do

recenter each cluster
let Xk = {xn | zn = k};
let µk = mean(Xk);

end

while any zn changes from previous iteration;
return {zn}Nn=1;

Algorithm 2: K-Means
7 / 19

Questions about K-Means

1. Does it converge?
Yes.

2. Does it converge to the right answer?

8 / 19

What would we like to do?

I Objective function: find k-means, µ1, . . . µk, which minimizes the following
squared distance cost function:

N∑
n=1

(
min

k′∈{1,...,k−1}
‖xn − µk′‖22

)
I We can also write this objective function in terms of the assignments zn’s. How?

This is the general approach of loss function minimization: find parameters which
make our objection function “small” (and which also “generalizes”)

9 / 19

Convergence Proof Sketch

I The cluster assignments, the zn’s take only finitely many values. So the cluster
centers, the µk’s, also must only take a finite number of values. Each time we
update any of them, we will never increase this function:

L(z1, . . . , zN ,µ1, . . . ,µK) =

N∑
n=1

∥∥xn − µzn

∥∥2
2
≥ 0

L is the objective function of K-Means clustering.

I Convergence must occur in a finite number of steps, due to:
L decreases at every step; L can only take on finitely many values.
See CIML, Chapter 15 for more details.

I Does the solution depend on the random initialization of the means µ∗?

10 / 19

Does K-means converge to the minimal cost solution?

I No! The objective is an NP-Hard problem, so we can’t expect any algorithm to
minimize the cost without essentially checking (near to) all assignments.

I Bad example for K-means:

11 / 19

Aside: Is NP-hardness a relevant concept for ML problems?

I Maybe the set of ’hard’ problems may not be interesting.

11 / 19

A Heuristic for Initializing K-Means

Data: unlabeled data D = 〈xn〉Nn=1, number of clusters K
Result: initial points 〈µ1, . . . ,µK〉
pick n uniformly at random from {1, . . . , N} and let µ1 = xn;
for k ∈ {2, . . . ,K} do

find the example that is furthest from all previously selected means

let n = argmax
n∈{1,...,N}

(
min

k′∈{1,...,k−1}
‖xn − µk′‖22

)
;

let µk = xn;

end
return 〈µ1, . . . ,µK〉;

Algorithm 3: FurthestFirst (K-means++)

12 / 19

FurthestFirst in action

13 / 19

FurthestFirst in action

13 / 19

Some Comments

I K-means usually converges very quickly in practice.
I K-means++ still not guaranteed to find the global optima,

I in practice, we can get stuck.
I often try multiple initializations (use a little randomness in K-means++ and run the

algorithm multiple times).
I it does have (“multiplicative”) approximation guarantees.

I How to choose K?
I Information theory criterion (see CIML).
I Based on ’good’ function value decrease on ’holdout’ set.

See CIML.

14 / 19

Recap: Unsupervised Learning

The training dataset consists only of 〈xn〉Nn=1.

There might, or might not, be labels.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

I Useful for visualization.

I Also fight the curse of dimensionality.

15 / 19

Linear Dimensionality Reduction

15 / 19

Linear Dimensionality Reduction

As before, you only have a training dataset consisting of 〈xn〉Nn=1.

Is there a way to represent each xn ∈ Rd as a lower-dimensional vector?

Why would we want to do this?

16 / 19

Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that
mean

(
〈xn〉Nn=1

)
= 0.

17 / 19

Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that
mean

(
〈xn〉Nn=1

)
= 0.

17 / 19

Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pn = xn · u is the projection of the nth example onto u.

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
n=1

p2n.

The u that gives the greatest variance, then, is:

argmax
u

N∑
n=1

(xn · u)2

18 / 19

Projecting x onto a vector u

18 / 19

Projecting x onto an ’orthonormal’ basis u

18 / 19

References I

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386–408, 1958.

19 / 19

