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Announcements

» HW?2 posted. Due Feb 1.
» It is long. Start this week!

» Today:
Review: the perceptron algo New: Unsupervised learning
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Review
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Neuron-Inspired Classifier

f(x) =sign(w-x+0)

d
remembering that: w - x = Zw[j] - x[7]
j=1

Learning requires us to set the weights w and the bias b.
Scalings: Note that assuming ||z|| < 1 doesn't change anything. Even with this
scaling, the scale of ||w|| is arbitrary.



Perceptron Learning Algorithm

Data: D = ((xy, yn))fy:l, number of epochs E
Result: weights w and bias b
initialize: w =0 and b = 0;
forec {1,...,E} do
for n € {1,..., N}, in random order do
# predict
g = sign (w - x,, + b);
if § # y, then
# update
W < W + Y, - Xn»
b+ b+ yn;

end

end
end
return w, b

Algorithm 1: PERCEPTRONTRAIN
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Linear Decision Boundary

w'x+ b=0
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When does the perceptron not converge?
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Linear Separability

A dataset D = {(x,,yn)))_; is linearly separable if there exists some linear classifier
(defined by w, b) such that, for all n, y,, = sign (w - x,, + ).

If data are separable, (without loss of generality) can scale so that:

» “margin at 1", can assume for all (x,y)
y(we-x)>1

(let w* be smallest norm vector with margin 1).

» CIML: assumes ||w*|| is unit length and scales the "1" above.

2/19



Linear Separability and the Geometric Margin
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Perceptron Convergence
Due to Rosenblatt (1958).

Theorem: Suppose data are scaled so that [|x;]|2 < 1.
Assume D is linearly separable, and let be w, be a separator with “margin 1".

Then the perceptron algorithm will converge in at most ||w.||* epochs.
> Let w; be the param at “iteration” t; wop =0
> “A Mistake Lemma": At iteration ¢
If we do not make a mistake, ||[wi 1 — W.l? = ||w; — w.?
If we do make a mistake, |[wir 1 — wi|? < |[wp —wo|? =1

» The theorem directly follows from this lemma. Why?
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Today

19



Unsupervised Learning

The training dataset consists only of (x,,)2_;.

There might, or might not, be labels.

Two simple unsupervised learning methods:
» cluster into K groups.
> project your data into less dimensions

» Today: look at these methods as objective function minimization.
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K-Means: An lterative Clustering Algorithm

(Review from last week.)
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K-Means: An lterative Clustering Algorithm

(Review from last week.)

The stars are cluster centers,
randomly assigned at first.
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K-Means: An lterative Clustering Algorithm

(Review from last week.)

Assign each example to its nearest
cluster center.
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K-Means: An lterative Clustering Algorithm

(Review from last week.)

Recalculate cluster centers to

reflect their respective examples.
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K-Means: An lterative Clustering Algorithm

(Review from last week.)

Recalculate cluster centers to
reflect their respective examples.

19



K-Means: An lterative Clustering Algorithm

(Review from last week.)

At this point, nothing will change;
we have converged.
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K-Means Clustering

Data: unlabeled data D = (xn>7]:[:1, number of clusters K
Result: cluster assignment z,, for each x,

initialize each p;, to a random location, for k € {1,..., K},
do

fornec{l,...,N} do

# assign each data point to its nearest cluster-center let
zn, = argminy, ||y, — Xp|2;

end

orke{l,...,K} do

7 recenter each cluster

let Xy = {x, | zn = k};

let pj, = mean(Xy);

-

end

while any z,, changes from previous iteration;

return {2, }_;;

Algorithm 2: K-MEANS



Questions about K-Means

1. Does it converge?
Yes.

2. Does it converge to the right answer?
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What would we like to do?

» Objective function: find k-means, p1, ... ug, which minimizes the following
squared distance cost function:

N
> min =[x, — g3
k'e{l,...k—1}

n=1

» We can also write this objective function in terms of the assignments z,'s. How?

This is the general approach of loss function minimization: find parameters which
make our objection function “small” (and which also “generalizes")
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Convergence Proof Sketch

» The cluster assignments, the z,'s take only finitely many values. So the cluster
centers, the p;'s, also must only take a finite number of values. Each time we
update any of them, we will never increase this function:

N
L(21y ooy 2N gy oo ) = Z [|%n —Manz >0
n=1

L is the objective function of K-Means clustering.

» Convergence must occur in a finite number of steps, due to:
L decreases at every step; L can only take on finitely many values.
See CIML, Chapter 15 for more details.

» Does the solution depend on the random initialization of the means w7
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Does K-means converge to the minimal cost solution?

» No! The objective is an NP-Hard problem, so we can't expect any algorithm to
minimize the cost without essentially checking (near to) all assignments.

» Bad example for K-means:
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Aside: Is NP-hardness a relevant concept for ML problems?

» Maybe the set of 'hard’ problems may not be interesting.
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A Heuristic for Initializing K-Means

Data: unlabeled data D = (x,,)Y_,, number of clusters K

n=1
Result: initial points (ptq,..., py)
pick n uniformly at random from {1,..., N} and let p; = x;

for k€ {2,...,K} do
# find the example that is furthest from all previously selected means

let n = argmax < min l|%n — V’k’”%)?
ne{l,...N} \Ke{l,...k—1}
let M = Xn;
end

return (foq, ..., g );
Algorithm 3: FURTHESTFIRST (K-MEANS++)
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FURTHESTFIRST in action
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FURTHESTFIRST in action
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Some Comments

» K-means usually converges very quickly in practice.
» K-means++ still not guaranteed to find the global optima,
> in practice, we can get stuck.
» often try multiple initializations (use a little randomness in K-means++ and run the
algorithm multiple times).
» it does have (“multiplicative”) approximation guarantees.
» How to choose K7?

» Information theory criterion (see CIML).
» Based on 'good’ function value decrease on 'holdout’ set.

See CIML.
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Recap: Unsupervised Learning
The training dataset consists only of (x,,)_;.
There might, or might not, be labels.

Simplest kind of unsupervised learning: cluster into K groups.

Second kind of unsupervised learning: dimensionality reduction.

» Useful for visualization.

» Also fight the curse of dimensionality.
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Linear Dimensionality Reduction
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Linear Dimensionality Reduction

N

As before, you only have a training dataset consisting of (x,,),;.

Is there a way to represent each x,, € R? as a lower-dimensional vector?

Why would we want to do this?
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Dimension of Greatest Variance

Assume that the data are
centered,
i.e., that

mean ((x,)2_;) = 0.
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Dimension of Greatest Variance
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Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
lulff = 1.

Pn = Xy - U is the projection of the nth example onto u.

Since the mean of the data is 0, the mean of (p1,...,pn) is also 0.

N
L , 1
This implies that the variance of (p1,...,pN) is N E:Ip%
-

The u that gives the greatest variance, then, is:

N
argmax Z (%, - u)?
u n=1

18 /19



Projecting x onto a vector u
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Projecting x onto an 'orthonormal’ basis u
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