
Machine Learning (CSE 446):
Concepts & the “i.i.d.” Supervised Learning Paradigm

Sham M Kakade
c© 2018

University of Washington
cse446-staff@cs.washington.edu

1 / 17

Review

1 / 17

Decision Tree: Making a Prediction
root
n:p

ϕ1?

0
n0:p0

ϕ2?

ϕ3?

1
n101:p101

0
n100:p100

ϕ4?

1
n111:p111

0
n110:p110

1
n1:p1

0
n10:p10

1
n11:p11

Data: decision tree t, input example x
Result: predicted class
if t has the form Leaf(y) then

return y;
else

t.φ is the feature associated with t;
t.child(v) is the subtree for value v;
return DTreeTest(t.child(t.φ(x)), x));

end
Algorithm 1: DTreeTest

2 / 17

(review) Greedily Building a Decision Tree (Binary Features)

Data: data D, feature set Φ
Result: decision tree
if all examples in D have the same label y, or Φ is empty and y is the best guess then

return Leaf(y);
else

for each feature φ in Φ do
partition D into D0 and D1 based on φ-values;
let mistakes(φ) = (non-majority answers in D0) + (non-majority answers in
D1);

end
let φ∗ be the feature with the smallest number of mistakes;
return Node(φ∗, {0 → DTreeTrain(D0,Φ \ {φ∗}), 1 →
DTreeTrain(D1,Φ \ {φ∗})});

end
Algorithm 2: DTreeTrain

3 / 17

Danger: Overfitting

error rate
(lower is better)

depth of the decision tree

training data

unseen data

overfitting

4 / 17

Today’s Lecture

4 / 17

The “i.i.d.” Supervised Learning Setup

I Let ` be a loss function; `(y, ŷ) is our loss by predicting ŷ when y is the correct
output.

I Let D(x, y) define the (unknown) underlying probability of input/output pair
(x, y), in “nature.” We never “know” this distribution.

I The training data D = 〈(x1, y1), (x2, y2), . . . , (xN , yN)〉 are assumed to be
identical, independently, distributed (i.i.d.) samples from D.

I We care about our expected error (i.e. the expected loss, the “true” loss,
...) with regards to the underlying distribution D.

I Goal: find a hypothesis which as has “low” expected error, using the training set.

5 / 17

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Concepts and terminology

I The learning algorithm maps the training set D to a some hypothesis f̂ .
I often have a “hypothesis class” F , where our algorithm chooses f̂ ∈ F .

I The training error of f is the loss of f on the training set.

I overfitting! (and underfitting)
Also: The generalization error is often referred to as the difference between the
training error of f̂ and the expected error of f̂ .

I Ways to check/avoid overfitting:
I use test set, i.i.d. data sampled D, to estimate the the expected error.
I use a “Development set”, i.i.d. from D, for hyperparameter turning

(or cross validation)

I We really just get sampled data, and we can break it up as we like.

6 / 17

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Loss functions
I `(y, ŷ) is our loss by outputting ŷ when y is the correct output.
I Many loss functions:

I For binary classification, where y ∈ {0, 1}:

`(y, ŷ) = Jy 6= ŷK

I For multi-class classification, where y is one of k-outcomes:

`(y, ŷ) = Jy 6= ŷK

I For regression, where y ∈ R, we often use the square loss:

`(y, ŷ) = (y − ŷ)2

I Classifier f ’s true expected error (or loss):

ε(f) =
∑
(x,y)

D(x, y) · `(y, f(x)) = E(x,y)∼D[`(y, f(x))]

Sometimes, when clear from context, the loss or error refers to the expected loss.

7 / 17

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Training error

I Goal: We want to find an f which has low ε(f).
But we don’t know ε(f)?

I The training error of hypothesis f is f ’s average error on the training data:

ε̂(f) =
1

N

N∑
n=1

`(yn, f(xn))

I In contrast, classifier f ’s true expected loss:

ε(f) = E(x,y)∼D[`(y, f(x))]

I Idea: Use the training error ε̂(f) as an empirical approximation to ε(f).
And hope that this approximation is good!

8 / 17

The training error and the LLN

I For a fixed f (which does not depend on the training set D), the training error is
an unbiased estimate of the expected error.
Proof: Taking an expectation over the dataset D

ED[ε̂(f)] = E[
1

N

∑
n

`(yn, f(xn))] =
1

N

∑
n

E`(yn, f(xn)) =
1

N

∑
n

ε(f) = ε(f)

I LLN: for a fixed f (not a function of D) and for large N , ε̂(f)→ ε(f)
e.g. for any fixed classifier, you can get a good estimate of its mistake rate with a
large dataset..

I This suggests: finding f which makes the training error small is a good approach?

9 / 17

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

What could go wrong?

I A learning algorithm which “memorizes” the data is easy to construct:

While such algorithms have 0 training error, they often have true expected error
no better than guessing.

I What went wrong?
I for a given f , we just need a training set to estimate the bias of a coin (for binary

classification). this is easy.
I BUT there is a (“very small”) chance this approximation fails (for “large N”)
I try enough hypothesis, and, by chance alone, one will look good.

10 / 17

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Kira Goldner

Overfitting, More Formally

I Let f̂ be the output of training algorithm.

I It is never true (in almost all cases) that ε̂(f̂), the training error of f̂ , is an unbiased

estimate ε(f̂), of the expected loss of f̂ .
I It is usually a gross underestimate.

I The generalization error of our algorithm is:

ε̂(f̂)− ε(f̂)

Large generalization error means we have overfit.
I We would like both:

I our training error, ε̂(f̂), to be small
I our generalization error to be small

I If both occur, then we have low expected error :)

I It is usually easy to get one of these two to be small.
I Overfitting: this is the fundamental problem of ML.

11 / 17

Kira Goldner

Danger: Overfitting

error rate
(lower is better)

depth of the decision tree

training data

unseen data

overfitting

12 / 17

Test sets and Dev. Sets

I Checking for overfitting:
I use test set, i.i.d. data sampled D, to estimate the the expected error.
I We get an unbiased estimate of the true error (and an accurate one for “reasonable”
N).

I we should never use the test set during training, as this violates the approximation
quality.

I Hyperparameters “def”: params of our algorithm/pseudo-code

1. usually they monotonically make training error lower
e.g. decision tree maximal width and maximal depth.

2. sometimes not we just don’t know how to set them (e.g. learning rates)

I How do we set hyperparams? For case 1,
I use a dev set, i.i.d. from D, for hyperparameter turning

(or cross validation)
I learn with training set (using different hyperparams); then check on your dev set.

13 / 17

Back to decision trees . . .

14 / 17

Avoiding Overfitting by Stopping Early

I Set a maximum tree depth dmax .
(also need to set a maximum width w)

I Only consider splits that decrease error by at least some ∆.

I Only consider splitting a node with more than Nmin examples.

In each case, we have a hyperparameter (dmax , w,∆, Nmin), which you should tune
on development data.

15 / 17

Avoiding Overfitting by Pruning

I Build a big tree (i.e., let it overfit), call it t0.

I For i ∈ {1, . . . , |t0|}: greedily choose a set of sibling-leaves in ti−1 to collapse that
increases error the least; collapse to produce ti.

(Alternately, collapse the split whose contingency table is least surprising under
chance assumptions.)

I Choose the ti that performs best on development data.

16 / 17

More Things to Know

I Instead of using the number of mistakes, we often use information-theoretic
quantities to choose the next feature.

I For continuous-valued features, we use thresholds, e.g., φ(x) ≤ τ .
In this case, you must choose τ .
If the sorted values of φ are 〈v1, v2, . . . , vN 〉, you only need to consider

τ ∈
{

vn+vn+1

2

}N−1

n=1
(midpoints between consecutive feature values).

I For continuous-valued outputs, what value makes sense as the prediction at a
leaf? What loss should we use instead of Jy 6= ŷK?

17 / 17

