
CSE 446: Machine Learning Lecture

Intro to Probabilistic Graphical Models/Latent variable models

Instructor: Sham Kakade

1 Review: Joint distributions and Bayes Rule

Suppose we have two random variables Z1 and Z2, with joint distribution Pr(Z1, Z2). Recall that:

Pr(Z1, Z2) = Pr(Z1) Pr(Z2|Z1)

This implies “Bayes rule”:
Pr(Z2|Z1) = Pr(Z1|Z2)Pr(Z2)/Pr(Z1)

Also, for any T random variables, Z1, Z2, . . . ZT , with joint distribution Pr(Z1, Z2, . . . ZT ). Then:

Pr(Z1, Z2, . . . , ZT ) = Pr(Z1) Pr(Z2|Z1) Pr(Z3|Z2, Z1) . . .Pr(Zt|Zt−1, . . . , Z1) . . .Pr(ZT |ZT−1, . . . , Z1) .

The above is sometimes referred to as the chain rule of probabilities.

2 Basic idea of ’generative models’

We are now going to specify the method in which we believe our data are generated. This does not tell us how to learn
the parameters of the model. However, specifying these procedures are helpful abstractions as they then give us a way
to answer questions such as: what are the document groupings? How dow decided upon what is a good ’rule’ to use
to group our documents? The following approach allows us to address these questions in a principled (and general)
approach.

For example, let us view each document as datapoint. And let us view each document as being represented by the
word counts in the document. So each datapoint is just a collection of word counts (suppose we have M documents
and each document is specified by a big vector of word counts). So how should we group our documents together?

Before we can answer the question, let us take a different viewpoint. For now, let us just specify a procedure for how
our documents are generated; a probabilistic generative model is an underlying model of how our data are created. In
what follows, we will consider a simple ’single topic’ case, we assumed that each datapoint/document has a hidden
topic associated with it. And that the words we observed were generated under a distribution over words implied by
the topic. The learning question (next class!) is how we figure out the topics and (soft) document assignments given
our data, by using our modeling assumptions.

These notes just specify a few generative models.

3 Common generative models

3.1 Mixture of Gaussians

Random variables: a “hidden” cluster i ∈ {1 . . . k} and a vector x ∈ Rd.
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Parameters: “mixing weights” πi = Pr(topic = i), means: µ1 . . . µj , noise covariance matrices Σ1,Σ2, . . .Σk

The Generative model for a datapoint:

1. sample a cluster i, which has probability πi

2. observe x, where x is the mean µi corrupted with Gaussian noise:

x = µi + η

where η has a multivariate normal distribution, N(0,Σi).

3.2 “Bag of words” model: a (single) topic model

Suppose every document has T words.

Random variables: a “hidden” topic i ∈ {1 . . . k} and a T -word outcomes w1, w2, . . . wT which take on some discrete
values.

Parameters: the “mixing weights” πi = Pr(topic = i), the “topics” bwi = Pr(word = w|topic = i)

The generative model for an T word “document”, where every document is only about one topic.

1. sample a “topic” i, which has probability πi

2. gererate T words w1, w2, . . . wT , independently. in particular, we choose word wt as the t-th word with proba-
bility bwti.

Note this generative model ignores the word order, so it is not a particularly faithful generative model.

Due to the ’graph’ (i.e. the conditional independencies implied by the generative model procedure), we can write the
joint probability of the outcome topic i occurring with a document containing the words w1, w2, . . . wT as:

Pr(topic = i and w1, w2, . . . wT ) = Pr(topic = i) Pr(w1, w2, . . . wT |topic = i)

= Pr(topic = i) Pr(w1|topic = i) Pr(w2|topic = i) Pr(wT |topic = i)

= πibw1ibw2i . . . bwT i

where the second to last step follows due to the fact that the words are generated independently given the topic i.

3.2.1 Inference

Suppose we were given a document with w1, w2, . . . wT . One inference question would be what is the probability the
underlying topic is i. By Bayes rule, we have:

Pr(topic = i|w1, w2, . . . wT ) =
1

Pr(w1, w2, . . . wT )
Pr(topic = i and w1, w2, . . . wT )

=
1

Z
πibw1ibw2i . . . bwT i

where Z is a number chosen so that the probabilities sum to 1. Critically, note that Z is not a function of i.

3.2.2 LDA: latent Dirichlet allocation

This is a popular model which allows documents to contain more than one topic.
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3.3 Hidden Markov models

Random variables: a “hidden” state sequence z1, z2, . . . zT (which take on some discrete values in some ’hidden state
space’) and T -discrete sequential outcomes w1, w2, . . . wT . Suppose each zi can take one of k outcomes and each wi

can take one of d outcomes.

Parameters: πi, Aji = Pr(zn+1 = j|zt = i), bmi = Pr(xn = m|zt = i)

The Generative model for an t word “document”: for each time t,

1. sample a “hidden” state sequence zn+1, using only the previous outcome zt. The sampling is determined solely
by the parameters {Aji}.

2. Sample wn+1 using only zn+1. This sampling is based only on the probabilities {bmi}.

Due to the ’graph’ (i.e. the conditional independencies implied by the generative model procedure), we can write the
joint probability of the hidden state sequence z1, z2, . . . zT and the word sequence w1, w2, . . . wT as:

Pr(z1, z2, . . . zT and w1, w2, . . . wT ) = bw1z1Az2z1bw2z2Az3z2 . . . bwT zT

One inference question would be to determine the probability that hidden state is zt = j given some observed sequence
w1, w2, . . . wT , i.e.

Pr(zt = j|w1, w2, . . . wT )

Naively, this computation might look difficult. However, this can be done in a computationally efficiently manner
using the Baum-Welch algorithm, sometimes known as the “Forward-Backward” algorithm.
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