Machine Learning (CSE 446): Probabilistic Generative Machine Learning

Sham M Kakade

© 2018

University of Washington cse446-staff@cs.washington.edu

Quick Review

- ▶ New view of log and squared loss functions: they are log likelihood functions!
- New view of regularized logistic/linear regression: maximize $\log p(\text{parameters}) + \log p(\text{outputs} \mid \text{inputs})$

$$f^{(\mathsf{BO})}(x) = \operatorname*{argmax}_{y} \mathcal{D}(x, y)$$

$$f^{(\mathsf{BO})}(x) = \operatorname*{argmax}_{y} \mathcal{D}(x, y)$$

Of course, we don't have $\mathcal{D}(x,y)$.

$$f^{(\mathsf{BO})}(x) = \operatorname*{argmax}_{y} \mathcal{D}(x, y)$$

Of course, we don't have $\mathcal{D}(x,y)$.

Probabilistic machine learning: define a probabilistic model relating random variables X and Y, and estimate its parameters.

$$f^{(\mathsf{BO})}(x) = \operatorname*{argmax}_{y} \mathcal{D}(x, y)$$

Of course, we don't have $\mathcal{D}(x,y)$.

Probabilistic machine learning: define a probabilistic model relating random variables X and Y, and estimate its parameters.

In the **generative** version, the model defines the *joint* distribution p(X,Y).

$$f^{(\mathsf{BO})}(x) = \operatorname*{argmax}_{y} \mathcal{D}(x, y)$$

Of course, we don't have $\mathcal{D}(x,y)$.

Probabilistic machine learning: define a probabilistic model relating random variables X and Y, and estimate its parameters.

In the **generative** version, the model defines the *joint* distribution p(X,Y).

What we saw earlier this week was the conditional version.

Chain Rule of Probabilities

For any ordering of M random variables V_1, \ldots, V_M :

$$p(V_1, V_2, \dots, V_M) = p(V_1) \cdot p(V_2 \mid V_1) \cdots p(V_M \mid V_1, \dots, V_{M-1})$$
$$= \prod_{m=1}^{M} p(V_m \mid V_1, \dots, V_{m-1})$$

Chain Rule of Probabilities

For any ordering of M random variables V_1, \ldots, V_M :

$$p(V_1, V_2, \dots, V_M) = p(V_1) \cdot p(V_2 \mid V_1) \cdots p(V_M \mid V_1, \dots, V_{M-1})$$
$$= \prod_{m=1}^{M} p(V_m \mid V_1, \dots, V_{m-1})$$

Consider r.v.s Y (our output variable) and X_1, \ldots, X_d (our d feature inputs).

$$p(Y, X_1, X_2, \dots, X_d) = p(Y) \cdot \prod_{j=1}^d p(X_j \mid Y, X_1, \dots, X_{j-1})$$

Chain Rule of Probabilities

For any ordering of M random variables V_1, \ldots, V_M :

$$p(V_1, V_2, \dots, V_M) = p(V_1) \cdot p(V_2 \mid V_1) \cdots p(V_M \mid V_1, \dots, V_{M-1})$$
$$= \prod_{m=1}^{M} p(V_m \mid V_1, \dots, V_{m-1})$$

Consider r.v.s Y (our output variable) and X_1, \ldots, X_d (our d feature inputs).

$$p(Y, X_1, X_2, \dots, X_d) = p(Y) \cdot \prod_{j=1}^d p(X_j \mid Y, X_1, \dots, X_{j-1})$$

$$\stackrel{\text{na\"{i}ve assumption}}{=} p(Y) \cdot \prod_{i=1}^{d} p(X_j \mid Y)$$

We'll stick with the convention that $y \in \{-1, +1\}$ but assume that "binary feature" means values in $\{0, 1\}$.

Naïve Bayes Classification

$$f^{(\mathsf{BO})}(\mathbf{x}) = \underset{y \in \{-1,+1\}}{\operatorname{argmax}} \mathcal{D}(\mathbf{x}, y)$$

$$f^{(\mathsf{NB})}(\mathbf{x}) = \underset{y \in \{-1,+1\}}{\operatorname{argmax}} p(\mathbf{x}, y)$$

$$= \underset{y \in \{-1,+1\}}{\operatorname{argmax}} p(Y = y) \cdot \prod_{j=1}^{d} p(X_j = \mathbf{x}[j] \mid Y = y)$$

Naïve Bayes Classification

$$\begin{split} f^{(\mathsf{BO})}(\mathbf{x}) &= \underset{y \in \{-1,+1\}}{\operatorname{argmax}} \, \mathcal{D}(\mathbf{x},y) \\ f^{(\mathsf{NB})}(\mathbf{x}) &= \underset{y \in \{-1,+1\}}{\operatorname{argmax}} \, p(\mathbf{x},y) \\ &= \underset{y \in \{-1,+1\}}{\operatorname{argmax}} \, p(Y=y) \cdot \prod_{j=1}^d p(X_j = \mathbf{x}[j] \mid Y=y) \end{split}$$

It's called "naïve" because of the assumption that each X_j is conditionally independent of the others, given Y=y.

Naïve Bayes Classification

$$\begin{split} f^{(\mathsf{BO})}(\mathbf{x}) &= \underset{y \in \{-1,+1\}}{\operatorname{argmax}} \, \mathcal{D}(\mathbf{x},y) \\ f^{(\mathsf{NB})}(\mathbf{x}) &= \underset{y \in \{-1,+1\}}{\operatorname{argmax}} \, p(\mathbf{x},y) \\ &= \underset{y \in \{-1,+1\}}{\operatorname{argmax}} \, p(Y=y) \cdot \prod_{j=1}^d p(X_j = \mathbf{x}[j] \mid Y=y) \end{split}$$

It's called "naı̈ve" because of the assumption that each X_j is conditionally independent of the others, given Y=y.

It's called "Bayes" because we can motivate it using Bayes' rule . . .

The "Bayes" Part

It's not really about the Bayes optimal classifier, or about Bayesian probability! Motivation: we want $\hat{y} = \operatorname{argmax}_y p(Y = y \mid \boldsymbol{X} = \mathbf{x})$. Bayes' rule:

$$p(Y \mid \boldsymbol{X}) = \underbrace{\frac{\overbrace{p(Y)} \cdot \overbrace{p(\boldsymbol{X} \mid Y)}^{\text{likelihood}}}{\underbrace{p(\boldsymbol{X})}}}_{\text{p}(\boldsymbol{X})}$$

$$\begin{split} \hat{y} &= \operatorname*{argmax}_{y} p(Y = y \mid \boldsymbol{X} = \mathbf{x}) \\ &= \operatorname*{argmax}_{y} \frac{p(Y = y) \cdot p(\boldsymbol{X} = \mathbf{x} \mid Y = y)}{p(\boldsymbol{X} = \mathbf{x})} \\ &= \operatorname*{argmax}_{y} p(Y = y) \cdot p(\boldsymbol{X} = \mathbf{x} \mid Y = y) \end{split}$$

evidence

Naïve Bayes Illustrated

Naïve Bayes: Probabilistic Story (All Binary Features)

1. Sample Y according to a Bernoulli distribution where:

$$p(Y = +1) = \pi$$
$$p(Y = -1) = 1 - \pi$$

- 2. For each feature X_j :
 - ightharpoonup Sample X_i according to a Bernoulli distribution where:

$$p(X_j = 1 \mid Y = y) = \theta_{X_j \mid y}$$

 $p(X_j = 0 \mid Y = y) = 1 - \theta_{X_j \mid y}$

Naïve Bayes: Probabilistic Story (All Binary Features)

1. Sample Y according to a Bernoulli distribution where:

$$p(Y = +1) = \pi$$
$$p(Y = -1) = 1 - \pi$$

- 2. For each feature X_j :
 - \triangleright Sample X_i according to a Bernoulli distribution where:

$$\begin{split} p(X_j = 1 \mid Y = y) &= \theta_{X_j \mid y} \\ p(X_j = 0 \mid Y = y) &= 1 - \theta_{X_j \mid y} \end{split}$$

1+2d parameters to estimate: $\pi, \{\theta_{X_i|+1}, \theta_{X_i|-1}\}_{j=1}^d$.

In general, for a Bernoulli with parameter π , if the observations are o_1, \ldots, o_N :

$$\hat{\pi} = \frac{\mathsf{count}(+1)}{\mathsf{count}(+1) + \mathsf{count}(-1)} = \frac{|\{n : o_n = +1\}|}{N}$$

In general, for a Bernoulli with parameter π , if the observations are o_1, \ldots, o_N :

$$\hat{\pi} = \frac{\mathsf{count}(+1)}{\mathsf{count}(+1) + \mathsf{count}(-1)} = \frac{|\{n: o_n = +1\}|}{N}$$

In general, for a conditional Bernoulli for $p(A \mid B)$, if the observations are $(a_1,b_1),\ldots,(a_N,b_N)$:

$$\begin{split} \hat{\theta}_{A|+1} &= \frac{\mathsf{count}(A=1,B=+1)}{\mathsf{count}(B=+1)} = \frac{|\{n:a_n=1 \land b_n=+1\}|}{|\{n:b_n=+1\}|} \\ \hat{\theta}_{A|-1} &= \frac{\mathsf{count}(A=1,B=-1)}{\mathsf{count}(B=-1)} = \frac{|\{n:a_n=1 \land b_n=-1\}|}{|\{n:b_n=-1\}|} \end{split}$$

In general, for a Bernoulli with parameter π , if the observations are o_1, \ldots, o_N :

$$\hat{\pi} = \frac{\mathsf{count}(+1)}{\mathsf{count}(+1) + \mathsf{count}(-1)} = \frac{|\{n: o_n = +1\}|}{N}$$

In general, for a conditional Bernoulli for $p(A \mid B)$, if the observations are $(a_1, b_1), \ldots, (a_N, b_N)$:

$$\begin{split} \hat{\theta}_{A|+1} &= \frac{\mathsf{count}(A=1,B=+1)}{\mathsf{count}(B=+1)} = \frac{|\{n:a_n=1 \land b_n=+1\}|}{|\{n:b_n=+1\}|} \\ \hat{\theta}_{A|-1} &= \frac{\mathsf{count}(A=1,B=-1)}{\mathsf{count}(B=-1)} = \frac{|\{n:a_n=1 \land b_n=-1\}|}{|\{n:b_n=-1\}|} \end{split}$$

So for naïve Bayes' parameters:

$$\hat{\pi} = \frac{|\{n: y_n = +1\}|}{N}$$

In general, for a Bernoulli with parameter π , if the observations are o_1, \ldots, o_N :

$$\hat{\pi} = \frac{\text{count}(+1)}{\text{count}(+1) + \text{count}(-1)} = \frac{|\{n : o_n = +1\}|}{N}$$

In general, for a conditional Bernoulli for $p(A \mid B)$, if the observations are $(a_1, b_1), \ldots, (a_N, b_N)$:

$$\hat{\theta}_{A|+1} = \frac{\mathsf{count}(A=1,B=+1)}{\mathsf{count}(B=+1)} = \frac{|\{n:a_n=1 \land b_n=+1\}|}{|\{n:b_n=+1\}|}$$

$$\hat{\theta}_{A|-1} = \frac{\mathsf{count}(A=1,B=-1)}{\mathsf{count}(B=-1)} = \frac{|\{n:a_n=1 \land b_n=-1\}|}{|\{n:b_n=-1\}|}$$

So for naïve Bayes' parameters:

$$\hat{\pi} = \frac{|\{n: y_n = +1\}|}{N}$$

For each
$$j$$
 and each $y \in \{-1,+1\}$: $\hat{\theta}_{j,y} = \frac{|\{n: y_n = y \land \mathbf{x}_n[j] = 1\}|}{|\{n: y_n = y\}|}$

Beyond Binary Features

For X_j that are not binary, there are many options for $p(X_j \mid Y = +1)$ and $p(X_j \mid Y = -1)$.

Some often-used ones are:

- For continuous X_j , define two Gaussian densities with parameters $\langle \mu_{X_j|+1}, \sigma^2_{X_j|+1} \rangle$ and $\langle \mu_{X_j|-1}, \sigma^2_{X_j|-1} \rangle$.
- ▶ For nonnegative integer X_j , define two Poisson distributions with parameters $\lambda_{X_j|+1}$ and $\lambda_{X_j|-1}$.