Machine Learning (CSE 446): Probabilistic Generative Machine Learning

Sham M Kakade

© 2018

University of Washington
cse446-staff@cs.washington.edu
Quick Review

- New view of log and squared loss functions: they are log likelihood functions!
- New view of regularized logistic/linear regression: maximize
 \[\log p(\text{parameters}) + \log p(\text{outputs} \mid \text{inputs}) \]
Remember the Bayes optimal classifier. \mathcal{D} is the true probability distribution over input-output pairs.

$$f^{(BO)}(x) = \arg\max_y \mathcal{D}(x, y)$$
Remember the Bayes optimal classifier. \mathcal{D} is the true probability distribution over input-output pairs.

$$f^{(BO)}(x) = \arg \max_y \mathcal{D}(x, y)$$

Of course, we don't have $\mathcal{D}(x, y)$.
Remember the Bayes optimal classifier. \mathcal{D} is the true probability distribution over input-output pairs.

$$f^{(\text{BO})}(x) = \arg\max_y \mathcal{D}(x, y)$$

Of course, we don’t have $\mathcal{D}(x, y)$.

Probabilistic machine learning: define a probabilistic model relating random variables X and Y, and estimate its parameters.
Remember the Bayes optimal classifier. \mathcal{D} is the true probability distribution over input-output pairs.

$$f^{(BO)}(x) = \arg\max_y \mathcal{D}(x, y)$$

Of course, we don’t have $\mathcal{D}(x, y)$.

Probabilistic machine learning: define a probabilistic model relating random variables X and Y, and estimate its parameters.

In the **generative** version, the model defines the *joint* distribution $p(X, Y)$.
Remember the Bayes optimal classifier. \mathcal{D} is the true probability distribution over input-output pairs.

$$f^{(BO)}(x) = \arg\max_y \mathcal{D}(x, y)$$

Of course, we don’t have $\mathcal{D}(x, y)$.

Probabilistic machine learning: define a probabilistic model relating random variables X and Y, and estimate its parameters.

In the \textbf{generative} version, the model defines the \textit{joint} distribution $p(X, Y)$.

What we saw earlier this week was the \textbf{conditional} version.
Chain Rule of Probabilities

For any ordering of M random variables V_1, \ldots, V_M:

$$p(V_1, V_2, \ldots, V_M) = p(V_1) \cdot p(V_2 \mid V_1) \cdots p(V_M \mid V_1, \ldots, V_{M-1})$$

$$= \prod_{m=1}^{M} p(V_m \mid V_1, \ldots, V_{m-1})$$
Chain Rule of Probabilities

For any ordering of M random variables V_1, \ldots, V_M:

$$p(V_1, V_2, \ldots, V_M) = p(V_1) \cdot p(V_2 \mid V_1) \cdots p(V_M \mid V_1, \ldots, V_{M-1})$$

$$= \prod_{m=1}^{M} p(V_m \mid V_1, \ldots, V_{m-1})$$

Consider r.v.s Y (our output variable) and X_1, \ldots, X_d (our d feature inputs).

$$p(Y, X_1, X_2, \ldots, X_d) = p(Y) \cdot \prod_{j=1}^{d} p(X_j \mid Y, X_1, \ldots, X_{j-1})$$
Chain Rule of Probabilities

For any ordering of M random variables V_1, \ldots, V_M:

$$p(V_1, V_2, \ldots, V_M) = p(V_1) \cdot p(V_2 \mid V_1) \cdots p(V_M \mid V_1, \ldots, V_{M-1})$$

$$= \prod_{m=1}^{M} p(V_m \mid V_1, \ldots, V_{m-1})$$

Consider r.v.s Y (our output variable) and X_1, \ldots, X_d (our d feature inputs).

$$p(Y, X_1, X_2, \ldots, X_d) = p(Y) \cdot \prod_{j=1}^{d} p(X_j \mid Y, X_1, \ldots, X_{j-1})$$

naïve assumption

$$= p(Y) \cdot \prod_{j=1}^{d} p(X_j \mid Y)$$

We’ll stick with the convention that $y \in \{-1, +1\}$ but assume that “binary feature” means values in $\{0, 1\}$.
Naïve Bayes Classification

\[
f^{(BO)}(x) = \arg\max_{y \in \{-1,+1\}} D(x, y)
\]

\[
f^{(NB)}(x) = \arg\max_{y \in \{-1,+1\}} p(x, y)
\]

\[
= \arg\max_{y \in \{-1,+1\}} p(Y = y) \cdot \prod_{j=1}^{d} p(X_j = x[j] \mid Y = y)
\]
Naïve Bayes Classification

\[f^{(\text{BO})}(x) = \arg\max_{y \in \{-1,+1\}} D(x,y) \]
\[f^{(\text{NB})}(x) = \arg\max_{y \in \{-1,+1\}} p(x,y) \]
\[= \arg\max_{y \in \{-1,+1\}} p(Y = y) \cdot \prod_{j=1}^{d} p(X_j = x[j] \mid Y = y) \]

It’s called “naïve” because of the assumption that each \(X_j \) is conditionally independent of the others, given \(Y = y \).
Naïve Bayes Classification

\[
f^{(BO)}(x) = \arg\max_{y \in \{-1,+1\}} D(x, y)
\]

\[
f^{(NB)}(x) = \arg\max_{y \in \{-1,+1\}} p(x, y)
\]

\[
= \arg\max_{y \in \{-1,+1\}} p(Y = y) \cdot \prod_{j=1}^{d} p(X_j = x[j] | Y = y)
\]

It’s called “naïve” because of the assumption that each \(X_j\) is conditionally independent of the others, given \(Y = y\).

It’s called “Bayes” because we can motivate it using Bayes’ rule . . .
The “Bayes” Part

It’s not really about the Bayes optimal classifier, or about Bayesian probability!

Motivation: we want \(\hat{y} = \arg\max_y p(Y = y \mid X = x) \).

Bayes’ rule:

\[
p(Y \mid X) = \frac{p(Y) \cdot p(X \mid Y)}{p(X)}
\]

\(\hat{y} = \arg\max_y p(Y = y \mid X = x)\)

\[
= \arg\max_y \frac{p(Y = y) \cdot p(X = x \mid Y = y)}{p(X = x)}
\]

\[
= \arg\max_y p(Y = y) \cdot p(X = x \mid Y = y)
\]
Naïve Bayes Illustrated

\[
\pi \rightarrow Y \rightarrow X
\]

MLE

\[
\hat{\pi}, \hat{\theta}
\]
1. Sample Y according to a Bernoulli distribution where:

\[
p(Y = +1) = \pi \\
p(Y = -1) = 1 - \pi
\]

2. For each feature X_j:
 - Sample X_j according to a Bernoulli distribution where:

\[
p(X_j = 1 \mid Y = y) = \theta_{X_j \mid y} \\
p(X_j = 0 \mid Y = y) = 1 - \theta_{X_j \mid y}
\]
1. Sample Y according to a Bernoulli distribution where:

\[p(Y = +1) = \pi \]
\[p(Y = -1) = 1 - \pi \]

2. For each feature X_j:
 - Sample X_j according to a Bernoulli distribution where:

\[p(X_j = 1 \mid Y = y) = \theta_{X_j \mid y} \]
\[p(X_j = 0 \mid Y = y) = 1 - \theta_{X_j \mid y} \]

1 + 2d parameters to estimate: $\pi, \{\theta_{X_j \mid +1}, \theta_{X_j \mid -1}\}_{j=1}^{d}$.
In general, for a Bernoulli with parameter π, if the observations are o_1, \ldots, o_N:

$$\hat{\pi} = \frac{\text{count}(+1)}{\text{count}(+1) + \text{count}(-1)} = \frac{|\{n: o_n = +1\}|}{N}$$
Naïve Bayes: Maximum Likelihood Estimation (All Binary Features)

In general, for a Bernoulli with parameter π, if the observations are o_1, \ldots, o_N:

$$\hat{\pi} = \frac{\text{count}(+1)}{\text{count}(+1) + \text{count}(-1)} = \frac{|\{n : o_n = +1\}|}{N}$$

In general, for a conditional Bernoulli for $p(A \mid B)$, if the observations are $(a_1, b_1), \ldots, (a_N, b_N)$:

$$\hat{\theta}_{A \mid +1} = \frac{\text{count}(A = 1, B = +1)}{\text{count}(B = +1)} = \frac{|\{n : a_n = 1 \land b_n = +1\}|}{|\{n : b_n = +1\}|}$$

$$\hat{\theta}_{A \mid -1} = \frac{\text{count}(A = 1, B = -1)}{\text{count}(B = -1)} = \frac{|\{n : a_n = 1 \land b_n = -1\}|}{|\{n : b_n = -1\}|}$$
Naïve Bayes: Maximum Likelihood Estimation (All Binary Features)

In general, for a Bernoulli with parameter π, if the observations are o_1, \ldots, o_N:

$$\hat{\pi} = \frac{\text{count}(+1)}{\text{count}(+1) + \text{count}(-1)} = \frac{|\{n : o_n = +1\}|}{N}$$

In general, for a conditional Bernoulli for $p(A \mid B)$, if the observations are $(a_1, b_1), \ldots, (a_N, b_N)$:

$$\hat{\theta}_{A\mid+1} = \frac{\text{count}(A = 1, B = +1)}{\text{count}(B = +1)} = \frac{|\{n : a_n = 1 \land b_n = +1\}|}{|\{n : b_n = +1\}|}$$

$$\hat{\theta}_{A\mid-1} = \frac{\text{count}(A = 1, B = -1)}{\text{count}(B = -1)} = \frac{|\{n : a_n = 1 \land b_n = -1\}|}{|\{n : b_n = -1\}|}$$

So for naïve Bayes' parameters:

- $\hat{\pi} = \frac{|\{n : y_n = +1\}|}{N}$
Naïve Bayes: Maximum Likelihood Estimation (All Binary Features)

In general, for a Bernoulli with parameter π, if the observations are o_1, \ldots, o_N:

$$\hat{\pi} = \frac{\text{count}(+1)}{\text{count}(+1) + \text{count}(-1)} = \frac{|\{n : o_n = +1\}|}{N}$$

In general, for a conditional Bernoulli for $p(A \mid B)$, if the observations are $(a_1, b_1), \ldots, (a_N, b_N)$:

$$\hat{\theta}_{A|+1} = \frac{\text{count}(A = 1, B = +1)}{\text{count}(B = +1)} = \frac{|\{n : a_n = 1 \land b_n = +1\}|}{|\{n : b_n = +1\}|}$$

$$\hat{\theta}_{A|-1} = \frac{\text{count}(A = 1, B = -1)}{\text{count}(B = -1)} = \frac{|\{n : a_n = 1 \land b_n = -1\}|}{|\{n : b_n = -1\}|}$$

So for naïve Bayes’ parameters:

- $\hat{\pi} = \frac{|\{n : y_n = +1\}|}{N}$

- For each j and each $y \in \{-1, +1\}$: $\hat{\theta}_{j,y} = \frac{|\{n : y_n = y \land x_n[j] = 1\}|}{|\{n : y_n = y\}|}$
Beyond Binary Features

For X_j that are not binary, there are many options for $p(X_j \mid Y = +1)$ and $p(X_j \mid Y = -1)$.

Some often-used ones are:

- For continuous X_j, define two Gaussian densities with parameters $\langle \mu_{X_j|+1}, \sigma^2_{X_j|+1} \rangle$ and $\langle \mu_{X_j|-1}, \sigma^2_{X_j|-1} \rangle$.

- For nonnegative integer X_j, define two Poisson distributions with parameters $\lambda_{X_j|+1}$ and $\lambda_{X_j|-1}$.