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Announcements

I Homeworks
I HW 3 posted. Get the most recent version.
I You must do the regular probs before obtaining any extra credit.
I Extra credit factored in after your scores are averaged together.

I Office hours today: 3-4p
I Today:

I Review
I Probabilistic methods
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SGD: How do we set the step sizes?

I Theory: If you turn down the step sizes at (some prescribed decaying method)
then SGD will converge to the right answer.
The “classical” theory doesn’t provide enough practical guidance.

I Practice:
I starting stepsize: start it “large”:

if it is “too large”, then either you diverge (or nothing improves). set it a little less
(like 1/4) less than this point.

I When do we decay it?
When your training error stops decreasing “enough”.

I HW: you’ll need to tune it a little. (a slow approach: sometimes you can just start
it somewhat smaller than the “divergent” value and you will find something
reasonable.)
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SGD: How do we set the mini-batch size m?

I Theory: there are diminishing returns to increasing m.

I Practice: just keep cranking it up and eventually you’ll see that your code doesn’t
get any faster.
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Regularization: How do we set it?

I Theory: really just says that λ controls your “model complexity”.
I we DO know that “early stopping” for GD/SGD is (basically) doing L2 regularization

for us
I i.e. if we don’t run for too long, then ‖w‖2 won’t become too big.

I Practice:
I Set with a dev set!
I Exact methods (like matrix inverse/least squares): always need to regularize or

something horrible happens....
I GD/SGD: sometimes (often ?) it works just fine ignoring regularization
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Today
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There is no magic in vector derivatives: scratch space
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There is no magic in vector derivatives: scratch space
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There is no magic in matrix derivatives: scratch space

5 / 14

Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner




Understanding MLE

y1 MLE π^

You can think of MLE as a “black box” for choosing parameter values.
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Understanding MLE

y1 MLE π

π Y

^
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Understanding MLE

xxxx1 y1 MLE
ŵ
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Understanding MLE

x w × ∑

b

Ylogistic

xxxx1 y1 MLE
ŵ

b^

6 / 14

Kira Goldner


Kira Goldner


Kira Goldner




Probabilistic Stories

x w × ∑

b

Ylogistic

π Y

logistic regression

Bernoulli
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Probabilistic Stories

x w × ∑

b

Ylogistic

π Y

logistic regression

Bernoulli

μ YGaussian

x w × ∑

b

Ylinear regression

σ2

σ2
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MLE example: estimating the bias of a coin
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MLE example: estimating the bias of a coin
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Then and Now

Before today, you knew how to do MLE:

I For a Bernoulli distribution: π̂ = count(+1)
count(+1)+count(−1) =

N+

N

I For a Gaussian distribution: µ̂ =
∑N

n=1 yn
N (and similar for estimating variance, σ̂2).

Logistic regression and linear regression, respectively, generalize these so that the
parameter is itself a function of x, so that we have a conditional model of Y given
X.

I The practical difference is that the MLE doesn’t have a closed form for these
models.
(So we use SGD and friends.)
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Remember: Linear Regression as a Probabilistic Model

Linear regression defines pw(Y | X) as follows:

1. Observe the feature vector x; transform it via the activation function:

µ = w · x

2. Let µ be the mean of a normal distribution and define the density:

pw(Y | x) =
1

σ
√
2π

exp−(Y − µ)2

2σ2

3. Sample Y from pw(Y | x).
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Remember: Linear Regression-MLE is (Unregularized) Squared Loss
Minimization!

argmin
w

N∑
n=1

− log pw(yn | xn) ≡ argmin
w

1

N

N∑
n=1

(yn −w · xn)2︸ ︷︷ ︸
SquaredLossn(w,b)

Where did the variance go?
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Adding a “Prior” to the Probabilistic Story

Probabilistic story:

I For n ∈ {1, . . . , N}:
I Observe xn.
I Transform it using parameters w to

get p(Y = y | xn,w).
I Sample yn ∼ p(Y | xn,w).
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Adding a “Prior” to the Probabilistic Story

Probabilistic story:

I For n ∈ {1, . . . , N}:
I Observe xn.
I Transform it using parameters w to

get p(Y = y | xn,w).
I Sample yn ∼ p(Y | xn,w).

Probabilistic story with a “prior”:

I Use hyperparameters α to define a
prior distribution over random
variables W , pα(W ).

I Sample w ∼ pα(W = w).
I For n ∈ {1, . . . , N}:

I Observe xn.
I Transform it using parameters w and
b to get p(Y | xn,w).

I Sample yn ∼ p(Y | xn,w).
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MLE vs. Maximum a Posteriori (MAP) Estimation

I Review: MLE
I We have a model Pr(Data|w).
I Find w which maximizes the probability of the data you have observed:

argmax
w

Pr(Data|w)

I New: Maximum a Posterior Estimation
I Also have a prior Pr(W = w)
I Now we a have posterior distribution:

Pr(w|Data) =
Pr(Data|w) Pr(W = w)

Pr(Data)

I Now suppose we are asked to provide our “best guess” at w. What should we do?
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Maximum a Posteriori (MAP) Estimation and Regularization

I MAP estimation:
argmax

w
Pr(w | Data)

I In many settings, this leads to

(ŵ) = argmax
w

log pα(w)︸ ︷︷ ︸
log prior

+

N∑
n=1

log pw(yn | xn)︸ ︷︷ ︸
log likelihood
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Maximum a Posteriori (MAP) Estimation and Regularization

I MAP estimation:
argmax

w
Pr(w | Data)

I In many settings, this leads to

(ŵ) = argmax
w

log pα(w)︸ ︷︷ ︸
log prior

+

N∑
n=1

log pw(yn | xn)︸ ︷︷ ︸
log likelihood

Option 1: let pα(W ) be a zero-mean Gaussian distribution with standard deviation α.

log pα(w) = − 1

2α2
‖w‖22 + constant
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Maximum a Posteriori (MAP) Estimation and Regularization
I MAP estimation:

argmax
w

Pr(w | Data)

I In many settings, this leads to

(ŵ) = argmax
w

log pα(w)︸ ︷︷ ︸
log prior

+

N∑
n=1

log pw(yn | xn)︸ ︷︷ ︸
log likelihood

Option 1: let pα(W ) be a zero-mean Gaussian distribution with standard deviation α.

log pα(w) = − 1

2α2
‖w‖22 + constant

Option 2: let pα(Wj) be a zero-location “Laplace” distribution with scale α.

log pα(w) = − 1

α
‖w‖1 + constant
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L2 v.s. L1-Regularization
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Probabilistic Story: L2-Regularized Logistic Regression

x w × ∑

b

Ylogistic

xxxx1 y1 MAP
ŵ

b^

0

σ2
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Why Go Probabilistic?

I Interpret the classifier’s activation function as a (log) probability (density), which
encodes uncertainty.

I Interpret the regularizer as a (log) probability (density), which encodes uncertainty.

I Leverage theory from statistics to get a better understanding of the guarantees we
can hope for with our learning algorithms.

I Change your assumptions, turn the optimization-crank, and get a new machine
learning method.

The key to success is to tell a probabilistic story that’s reasonably close to reality,
including the prior(s).
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