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Announcements

I Homeworks
I HW 3 posted. Get the most recent version.
I You must do the regular probs before obtaining any extra credit.
I Extra credit factored in after your scores are averaged together.

I Office hours today: 3-4p
I Today:

I Review
I Probabilistic methods
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Review
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SGD: How do we set the step sizes?

I Theory: If you turn down the step sizes at (some prescribed decaying method)
then SGD will converge to the right answer.
The “classical” theory doesn’t provide enough practical guidance.

I Practice:
I starting stepsize: start it “large”:

if it is “too large”, then either you diverge (or nothing improves). set it a little less
(like 1/4) less than this point.

I When do we decay it?
When your training error stops decreasing “enough”.

I HW: you’ll need to tune it a little. (a slow approach: sometimes you can just start
it somewhat smaller than the “divergent” value and you will find something
reasonable.)
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SGD: How do we set the mini-batch size m?

I Theory: there are diminishing returns to increasing m.

I Practice: just keep cranking it up and eventually you’ll see that your code doesn’t
get any faster.
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Regularization: How do we set it?

I Theory: really just says that λ controls your “model complexity”.
I we DO know that “early stopping” for GD/SGD is (basically) doing L2 regularization

for us
I i.e. if we don’t run for too long, then ‖w‖2 won’t become too big.

I Practice:
I Set with a dev set!
I Exact methods (like matrix inverse/least squares): always need to regularize or

something horrible happens....
I GD/SGD: sometimes (often ?) it works just fine ignoring regularization
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Today
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There is no magic in vector derivatives: scratch space
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There is no magic in vector derivatives: scratch space
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There is no magic in matrix derivatives: scratch space
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Understanding MLE

y1 MLE π^

You can think of MLE as a “black box” for choosing parameter values.
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Probabilistic Stories

x w × ∑

b

Ylogistic

π Y

logistic regression

Bernoulli

7 / 14



Probabilistic Stories

x w × ∑

b

Ylogistic

π Y

logistic regression

Bernoulli

μ YGaussian

x w × ∑

b

Ylinear regression

σ2

σ2

7 / 14



MLE example: estimating the bias of a coin
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MLE example: estimating the bias of a coin
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Then and Now

Before today, you knew how to do MLE:

I For a Bernoulli distribution: π̂ = count(+1)
count(+1)+count(−1) =

N+

N

I For a Gaussian distribution: µ̂ =
∑N

n=1 yn
N (and similar for estimating variance, σ̂2).

Logistic regression and linear regression, respectively, generalize these so that the
parameter is itself a function of x, so that we have a conditional model of Y given
X.

I The practical difference is that the MLE doesn’t have a closed form for these
models.
(So we use SGD and friends.)
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Remember: Linear Regression as a Probabilistic Model

Linear regression defines pw(Y | X) as follows:

1. Observe the feature vector x; transform it via the activation function:

µ = w · x

2. Let µ be the mean of a normal distribution and define the density:

pw(Y | x) =
1

σ
√
2π

exp−(Y − µ)2

2σ2

3. Sample Y from pw(Y | x).
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Remember: Linear Regression-MLE is (Unregularized) Squared Loss
Minimization!

argmin
w

N∑
n=1

− log pw(yn | xn) ≡ argmin
w

1

N

N∑
n=1

(yn −w · xn)2︸ ︷︷ ︸
SquaredLossn(w,b)

Where did the variance go?
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Adding a “Prior” to the Probabilistic Story

Probabilistic story:

I For n ∈ {1, . . . , N}:
I Observe xn.
I Transform it using parameters w to

get p(Y = y | xn,w).
I Sample yn ∼ p(Y | xn,w).
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Adding a “Prior” to the Probabilistic Story

Probabilistic story:

I For n ∈ {1, . . . , N}:
I Observe xn.
I Transform it using parameters w to

get p(Y = y | xn,w).
I Sample yn ∼ p(Y | xn,w).

Probabilistic story with a “prior”:

I Use hyperparameters α to define a
prior distribution over random
variables W , pα(W ).

I Sample w ∼ pα(W = w).
I For n ∈ {1, . . . , N}:

I Observe xn.
I Transform it using parameters w and
b to get p(Y | xn,w).

I Sample yn ∼ p(Y | xn,w).
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MLE vs. Maximum a Posteriori (MAP) Estimation

I Review: MLE
I We have a model Pr(Data|w).
I Find w which maximizes the probability of the data you have observed:

argmax
w

Pr(Data|w)

I New: Maximum a Posterior Estimation
I Also have a prior Pr(W = w)
I Now we a have posterior distribution:

Pr(w|Data) =
Pr(Data|w) Pr(W = w)

Pr(Data)

I Now suppose we are asked to provide our “best guess” at w. What should we do?
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Maximum a Posteriori (MAP) Estimation and Regularization

I MAP estimation:
argmax

w
Pr(w | Data)

I In many settings, this leads to

(ŵ) = argmax
w

log pα(w)︸ ︷︷ ︸
log prior

+

N∑
n=1

log pw(yn | xn)︸ ︷︷ ︸
log likelihood
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Maximum a Posteriori (MAP) Estimation and Regularization

I MAP estimation:
argmax

w
Pr(w | Data)

I In many settings, this leads to

(ŵ) = argmax
w

log pα(w)︸ ︷︷ ︸
log prior

+

N∑
n=1

log pw(yn | xn)︸ ︷︷ ︸
log likelihood

Option 1: let pα(W ) be a zero-mean Gaussian distribution with standard deviation α.

log pα(w) = − 1

2α2
‖w‖22 + constant
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Maximum a Posteriori (MAP) Estimation and Regularization
I MAP estimation:

argmax
w

Pr(w | Data)

I In many settings, this leads to

(ŵ) = argmax
w

log pα(w)︸ ︷︷ ︸
log prior

+

N∑
n=1

log pw(yn | xn)︸ ︷︷ ︸
log likelihood

Option 1: let pα(W ) be a zero-mean Gaussian distribution with standard deviation α.

log pα(w) = − 1

2α2
‖w‖22 + constant

Option 2: let pα(Wj) be a zero-location “Laplace” distribution with scale α.

log pα(w) = − 1

α
‖w‖1 + constant
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L2 v.s. L1-Regularization
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Probabilistic Story: L2-Regularized Logistic Regression

x w × ∑

b

Ylogistic
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b^

0

σ2
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Why Go Probabilistic?

I Interpret the classifier’s activation function as a (log) probability (density), which
encodes uncertainty.

I Interpret the regularizer as a (log) probability (density), which encodes uncertainty.

I Leverage theory from statistics to get a better understanding of the guarantees we
can hope for with our learning algorithms.

I Change your assumptions, turn the optimization-crank, and get a new machine
learning method.

The key to success is to tell a probabilistic story that’s reasonably close to reality,
including the prior(s).
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