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Announcements

» Homeworks
» HW 3 posted. Get the most recent version.

» You must do the regular probs before obtaining any extra credit.

» Extra credit factored in after your scores are averaged together.
» Office hours today: 3-4p
> Today:

» Review
» Probabilistic methods
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SGD: How do we set the step sizes?

» Theory: If you turn down the step sizes at (some prescribed decaying method)
then SGD will converge to the right answer.
The “classical” theory doesn’t provide enough practical guidance.
» Practice:
» starting stepsize: start it “large”:
if it is “too large”, then either you diverge (or nothing improves). set it a little less
(like 1/4) less than this point.
» When do we decay it?
When your training error stops decreasing “enough”.
» HW: you'll need to tune it a little. (a slow approach: sometimes you can just start
it somewhat smaller than the “divergent” value and you will find something
reasonable.)
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SGD: How do we set the mini-batch size m?

» Theory: there are diminishing returns to increasing m.

» Practice: just keep cranking it up and eventually you'll see that your code doesn’t
get any faster.
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Regularization: How do we set it?

» Theory: really just says that A controls your “model complexity”.
» we DO know that “early stopping” for GD/SGD is (basically) doing L2 regularization
for us
» i.e. if we don't run for too long, then ||w|? won't become too big.
» Practice:
» Set with a dev set!

» Exact methods (like matrix inverse/least squares): always need to regularize or
something horrible happens....
» GD/SGD: sometimes (often ?) it works just fine ignoring regularization
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Today
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There is no magic in vector derivatives: scratch space

14



There is no magic in vector derivatives: scratch space
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There is no magic in matrix derivatives: scratch space
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Understanding MLE
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You can think of MLE as a “black box" for choosing parameter values.
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Understanding MLE
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Probabilistic Stories
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MLE example: estimating the bias of a coin
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MLE example: estimating the bias of a coin
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Then and Now

Before today, you knew how to do MLE:

count(+1) _ Nt
count(+1)+count(—1) = N

25:1 Yn (
N

» For a Bernoulli distribution: 7© =

» For a Gaussian distribution: [ =

Logistic regression and linear regression, respectively, generalize these so that the
parameter is itself a function of x, so that we have a conditional model of Y given
X.

» The practical difference is that the MLE doesn't have a closed form for these
models.
(So we use SGD and friends.)

and similar for estimating variance, &2).
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Remember: Linear Regression as a Probabilistic Model

Linear regression defines pw (Y | X) as follows:

1. Observe the feature vector x; transform it via the activation function:

U=Ww-X
2. Let u be the mean of a normal distribution and define the density:

(Y —p)?
202

pw(Y | x) = exp —

1
oV2m
3. Sample Y from pw (Y | x).

10/14



Remember: Linear Regression-MLE is (Unregularized) Squared Loss
Minimization!

N N
. 1
argmin'y —log pu (yn | %) = argmin >~ (yn = W - xa)?
w n=1 w n

=1 SquaredLoss,,(w,b)

Where did the variance go?
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Adding a “Prior” to the Probabilistic Story

Probabilistic story:
» Forne{l,...,N}:

» Observe x,,.

» Transform it using parameters w to
get p(Y =y | xn, w).

» Sample y, ~ p(Y | x5, W).
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Adding a “Prior” to the Probabilistic Story

Probabilistic story with a “prior”:

» Use hyperparameters « to define a

Probabilistic story: prior distribution over random
» Forne{l,...,N}: variables W, po(W).
» Observe x,,. » Sample w ~ po (W = w).
» Transform it using parameters w to » Forne{l,...,N}:
get p(Y' =y | xp, w). » Observe x,,.
> Sample y,, ~ p(Y | x, w). > Transformnit using parameters w and

b to get p(YV | x,, W).
» Sample y, ~ p(Y | x5, W).
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MLE vs. Maximum a Posteriori (MAP) Estimation

» Review: MLE

» We have a model Pr(Data|w).
» Find w which maximizes the probability of the data you have observed:

argmax Pr(Data|w)

» New: Maximum a Posterior Estimation
» Also have a prior Pr(WW = w)

» Now we a have posterior distribution:
Pr(Data|w) Pr(W = w)
Pr(Data)

Pr(w|Data) =

» Now suppose we are asked to provide our “best guess’ at w. What should we do?
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Maximum a Posteriori (MAP) Estimation and Regularization

» MAP estimation:

argmax Pr(w | Data)
w

» In many settings, this leads to

N
(W) = argmax log po (W) + Z log pw (Yn | Xn)
W N

log prior n=l

log likelihood
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Maximum a Posteriori (MAP) Estimation and Regularization

» MAP estimation:
argmax Pr(w | Data)

w
> In many settings, this leads to
N
(W) = rgmax logpa Zlogpw Yn | Xn)
" n=1
log prior

log likelihood

Option 1: let p, (W) be a zero-mean Gaussian distribution with standard deviation «.

1
log pa(w) = —ﬁHwH% + constant
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Maximum a Posteriori (MAP) Estimation and Regularization

» MAP estimation:

argmax Pr(w | Data)

> In many settings, this leads to

N
(W) = argmax log po (W) + Z log pw (Yn | Xn)
W S——

log prior n=l

log likelihood

Option 1: let p, (W) be a zero-mean Gaussian distribution with standard deviation «.

1
log po (W) = —@HwH% + constant

Option 2: let po(W;) be a zero-location “Laplace” distribution with scale a.

1
log pa (W) = —anHl + constant
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Probabilistic Story: L,-Regularized Logistic Regression
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Why Go Probabilistic?

» Interpret the classifier's activation function as a (log) probability (density), which
encodes uncertainty.

» Interpret the regularizer as a (log) probability (density), which encodes uncertainty.

» Leverage theory from statistics to get a better understanding of the guarantees we
can hope for with our learning algorithms.

» Change your assumptions, turn the optimization-crank, and get a new machine
learning method.

The key to success is to tell a probabilistic story that's reasonably close to reality,
including the prior(s).
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