Machine Learning (CSE 446):
Practical issues: optimization and learning

Sham M Kakade

© 2018

University of Washington
cse446-staff@cs.washington.edu
Announcements

- Midterm summary:
 - stats: 71.5 std: 18
 - Office hours today: 1:15-2:30 (No office hours on Monday)

- Monday: John Thickstun guest lecture

- Grading:
 - HW: 60%
 - Midterm: 15%
 - Final: 25%

- HW3 posted
 - will be periodically updated for typos/clarifications
 - extra credit posted soon

- Today:
 - Midterm review
 - GD/SGD: practical issues

\[
(x_1, x_2) \rightarrow (x_1, x_2, x_1^2, x_2^2, x_1 x_2)
\]
Midterm
What is a good model of this distribution?
What is a good model of this distribution?

“A mixture of Gaussians”
Midterm Q4: scratch space

\[\| w \|_2^2 \geq \frac{1}{\| x \|_2} \]

for all \(y \),

when it has a solution,

\[y_0 \cdot (w \cdot x) \geq 1 \]

\(\iff \) linearly separable

+ -
- +
+ -
Midterm: scratch space
Midterm Q5: scratch space

- $(1, 0)$

- $4 - 4 = 0$

- $\frac{1}{4} (x^2 + 4^2 + 0 + 0) = 8$

- $(4, 0), (-4, 0), (0, 0), (0, 0)$

- $\frac{1}{4} (0 + 0 + 1 + 1) = \frac{1}{2}$
Midterm: scratch space
Today
The “general” Loss Minimization Problem

\[w^* = \arg\min_w \frac{1}{N} \sum_{n=1}^{N} \ell(x_n, y_n, w) + R(w) \]

How do we run GD? SGD? Which one to use?

How do run them?
Our running example

\[
\arg\min_w \left\{ \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} (y_n - w \cdot x_n)^2 + \frac{1}{2} \lambda \|w\|^2 \right\}
\]

- GD? SGD?

- Note we are computing an average. What is a crude way to estimate an average?

Will it converge?
How does GD behave? A 1-dim example

\[\min_{\omega} f(\omega) \]

\[f(\omega) = \frac{1}{2} \omega^T \omega \]

\[Df(\omega) = \omega \]

\[\omega \in \Omega \]

\[\Omega = \omega - \epsilon \Omega \]
GD: How do we set the step sizes?

- Theory:
 - square loss:
 - more generally:

- Practice:
 - square loss:
 - more generally:

- Do we decay the stepsize?

try things out to get it stable
SGD for the square loss

Data: step sizes \(\langle \eta^{(1)}, \ldots, \eta^{(K)} \rangle \)

Result: parameter \(w \)

initialize: \(w^{(0)} = 0 \);

for \(k \in \{1, \ldots, K\} \) do

\(n \sim \text{Uniform}\{1, \ldots, N\} \);

\[w^{(k)} = w^{(k-1)} + \eta^{(k)} \left(y_n - w^{(k-1)} \cdot x_n \right) x_n; \]

end

return \(w^{(K)} \);

Algorithm 1: SGD
SGD for the square loss

Data: step sizes $\langle \eta^{(1)}, \ldots, \eta^{(K)} \rangle$

Result: parameter w

initialize: $w^{(0)} = 0$

for $k \in \{1, \ldots, K\}$ do
 $n \sim \text{Uniform}\{1, \ldots, N\}$;
 $w^{(k)} = w^{(k-1)} + \eta^{(k)} (y_n - w^{(k-1)} \cdot x_n) x_n$;
end

return $w^{(K)}$;

Algorithm 2: SGD

- where did the N go?
- regularization?
- minibatching?
SGD: How do we set the step sizes?

- Theory:

- Practice:
 - How do start it?
 - When do we decay it?
Stochastic Gradient Descent: Convergence

\[w^* = \arg\min_w \frac{1}{N} \sum_{n=1}^{N} \ell_n(w) \]

- \(w^{(k)} \): our parameter after \(k \) updates.
- Thm: Suppose \(\ell(\cdot) \) is convex (and satisfies mild regularity conditions). There is a decreasing sequence of step sizes \(\eta^{(k)} \) so that our function value, \(F(w^{(k)}) \), converges to the minimal function value, \(F(w^*) \).
- GD vs SGD: we need to turn down our step sizes over time!
Making features: scratch space