CSE 446: Machine Learning

Proof of the Perceptron Mistake Lemma

Instructor: Sham Kakade

Our *data set* is: $\{(x_1, y_1), \dots, (x_N, y_N)\}$, the x_n 's are real vectors and where $y_n \in \{-1, +1\}$. Suppose this data set is *linearly separable*. That is, there is a w_* such that (for all n in our dataset),

$$y_n = \operatorname{sgn}(w_* \cdot x_n) \,. \tag{1}$$

Separability means that $y_n(w_* \cdot x_n) > 0$ for all points in our data set. Let us make the assumption that this quantity is lower bounded by 1 (which is true without loss of generality).

Assumption M. Without loss of generality suppose $||x_n|| \le 1$. Suppose there exists a $w_* \in \mathbb{R}^d$ for which (1) holds. Further assume that (for all n in our dataset),

$$y_n(w_* \cdot x_n) \ge 1 , \tag{2}$$

Note the choice of 1 *is arbitrary, as* w_* *has an arbitrary scale.*

Connection to the "geometric margin": Note that the above implies that (for all *n* in our dataset):

$$y_n(\frac{w_*}{\|w_*\|} \cdot x_n) \ge \frac{1}{\|w_*\|}$$

In other words, the width of the strip separating the positives from the negatives is of size $\frac{2}{\|w_*\|}$. The margin is often defined this way (where we have implicitly used the scaling that $\|w_*\| = 1$ and that the margin is some positive value rather than 1). In particular in CIML, the "geometric margin" implicitly assumes the scaling where $\|w_*\| = 1$. Both lead the same convergence guarantee for the number of total mistakes made by the perceptron algorithm.

We are now ready to prove the mistake lemma.

Lemma 0.1. (Perceptron Mistake Lemma) Suppose Assumption M holds. Define $m_t = 1$ if a mistake occurs at time t and 0 otherwise. By construction of the perceptron algorithm, the update rule is:

$$w_{t+1} = w_t + m_t y_t x_t$$

(Note that using m_t provides a compact way to write the update rule, i.e. if $m_t = 0$, there is no update, and, if $m_t = 1$, the corresponds to the usual update $w_{t+1} = w_t + y_t x_t$.) We have that:

$$||w_{t+1} - w_*||^2 \le ||w_t - w_*||^2 - m_t.$$

Proof. Observe:

$$||w_{t+1} - w_*||^2 = ||w_t + m_t y_t x_t - w_*||^2$$

= $||w_t - w_*||^2 + 2m_t y_t x_t (w_t - w_*) + m_t^2 y_t^2 ||x_t||^2$
= $||w_t - w_*||^2 + 2m_t y_t x_t (w_t - w_*) + m_t ||x_t||^2$
< $||w_t - w_*||^2 + 2m_t y_t x_t (w_t - w_*) + m_t$

Lecture

The middle term can be bounded as follows:

$$m_t y_t x_t (w_t - w_*) = m_t y_t x_t w_t - m_t y_t x_t w_* \le 0 - m_t < -m_t$$

where have used that $y_t x_t w_t < 0$ when there is a mistake (to bound the first term by 0) and we have used the margin assumption to bound the second term.

Putting this together

$$||w_{t+1} - w_*||^2 \leq ||w_t - w_*||^2 + 2m_t y_t x_t (w_t - w_*) + m_t$$

$$\leq ||w_t - w_*||^2 - 2m_t + m_t$$

$$\leq ||w_t - w_*||^2 - m_t$$

which completes the proof.