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Happy Medium?

Decision trees (that aren’t too deep): use relatively few features to classify.

K-nearest neighbors: all features weighted equally.

Today: use all features, but weight them.

For today’s lecture, assume that y ∈ {−1,+1} instead of {0, 1}, and that x ∈ Rd.
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Inspiration from Neurons
Image from Wikimedia Commons.

Input signals come in through dendrites, output signal passes out through the axon.
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Perceptron Learning Algorithm
Data: D = 〈(xn, yn)〉Nn=1, number of epochs E
Result: weights w and bias b
initialize: w = 0 and b = 0;
for e ∈ {1, . . . , E} do

for n ∈ {1, . . . , N}, in random order do
# predict
ŷ = sign (w · xn + b);
if ŷ 6= yn then

# update
w← w + yn · xn;
b← b+ yn;

end

end

end
return w, b

Algorithm 1: PerceptronTrain
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Linear Decision Boundary

w·x + b = 0

activation = w·x + b 
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Interpretation of Weight Values

What does it mean when . . .

I w1 = 100?

I w2 = −1?

I w3 = 0?

What if ‖w‖ is “large”?
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What would we like to do?

I Optimization problem: find a classifier which minimizes the classification loss.

I The perceptron algorithm can be viewed as trying to do this...

I Problem: (in general) this is an NP-Hard problem.

I Let’s still try to understand it...

This is the general approach of loss function minimization: find parameters which
make our training error ’small’ (and which also generalizes)
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When does the perceptron not converge?
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Linear Separability

A dataset D = 〈(xn, yn)〉Nn=1 is linearly separable if there exists some linear classifier
(defined by w, b) such that, for all n, yn = sign (w · xn + b).

If data are separable, (without loss of generality) can scale so that:

I “margin at 1”, can assume for all (x, y)

y (w∗ · x) ≥ 1

(let w∗ be smallest norm vector with margin 1).

I CIML: assumes ‖w∗‖ is unit length and scales the ”1” above.
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Perceptron Convergence
Due to Rosenblatt (1958).

Theorem: Suppose data are scaled so that ‖xi‖2 ≤ 1.
Assume D is linearly separable, and let be w∗ be a separator with “margin 1”.
Then the perceptron algorithm will converge in at most ‖w∗‖2 epochs.

I Let wt be the param at “iteration” t; w0 = 0

I “A Mistake Lemma”: At iteration t

If we make a mistake, ‖wt+1 −w∗‖2 = ‖wt −w∗‖2

If we do make a mistake, ‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 − 1

I The theorem directly follows from this lemma. Why?
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Proof of the “Mistake Lemma”

10 / 13

Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner




Proof of the “Mistake Lemma” (more scratch space)
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Proof of the “Mistake Lemma” (more scratch space)
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Voted Perceptron

I Suppose w1, w4, w10,w11 . . . are the parameters right after we updated (e.g.
after we made a mistake).

I Idea: instead of using the final wt to classify, we classify with a majority vote
using w1, w4, w10,w11 . . .

I Why?

See CIML for details: Implementation and variants.
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Voted Perceptron

Let w(e,n) and b(e,n) be the parameters after updating based on the nth example on
epoch e.

ŷ = sign

(
E∑

e=1

N∑
n=1

sign(w(e,n) · x+ b(e,n))

)
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