
Machine Learning (CSE 446):
Backpropagation

Sham M Kakade
c© 2018

University of Washington
cse446-staff@cs.washington.edu

1 / 11

Neuron-Inspired Classifiers

xn W × ∑

b

Lnyn

tanh
ŷ

weights

classifier output, “f”

input

correct output loss

v
× ∑ !

“activation”

“hidden units”

2 / 11

Two-Layer Neural Network

f(x) = sign

(
H∑

h=1

vh · tanh (wh · x + bh)

)
= sign (v · tanh (Wx + b))

I Two-layer networks allow decision boundaries that are nonlinear.

I It’s fairly easy to show that “XOR” can be simulated (recall conjunction features
from the “practical issues” lecture on 10/18).

I Theoretical result: any continuous function on a bounded region in Rd can be
approximated arbitrarily well, with a finite number of hidden units.

I The number of hidden units affects how complicated your decision boundary can
be and how easily you will overfit.

3 / 11

Learning with a Two-Layer Network

Parameters: W ∈ RH×d, b ∈ RH , and v ∈ RH

I If we choose a differentiable loss, then the the whole function will be differentiable
with respect to all parameters.

I Because of the squashing function, which is not convex, the overall learning
problem is not convex.

I What does (stochastic) (sub)gradient descent do with non-convex functions? It
finds a local minimum.

I To calculate gradients, we need to use the chain rule from calculus.

I Special name for (S)GD with chain rule invocations: backpropagation.

4 / 11

Backpropagation

For every node in the computation graph, we wish to calculate the first derivative of
Ln with respect to that node. For any node a, let:

ā =
∂Ln

∂a

5 / 11

Backpropagation

For every node in the computation graph, we wish to calculate the first derivative of
Ln with respect to that node. For any node a, let:

ā =
∂Ln

∂a

Base case:

L̄n =
∂Ln

∂Ln
= 1

5 / 11

Backpropagation

For every node in the computation graph, we wish to calculate the first derivative of
Ln with respect to that node. For any node a, let:

ā =
∂Ln

∂a

Base case:

L̄n =
∂Ln

∂Ln
= 1

From here on, we overload notation and let a and b refer to nodes and to their values.

5 / 11

Backpropagation
For every node in the computation graph, we wish to calculate the first derivative of
Ln with respect to that node. For any node a, let:

ā =
∂Ln

∂a

After working forwards through the computation graph to obtain the loss Ln, we work
backwards through the computation graph, using the chain rule to calculate ā for every
node a, making use of the work already done for nodes that depend on a.

∂Ln

∂a
=
∑
b:a→b

∂Ln

∂b
· ∂b
∂a

ā =
∑
b:a→b

b̄ · ∂b
∂a

=
∑
b:a→b

b̄ ·

1 if b = a+ c for some c
c if b = a · c for some c

1− b2 if b = tanh(a)

5 / 11

Backpropagation with Vectors

Pointwise (“Hadamard”) product for vectors in Rn:

a� b =

a[1] · b[1]
a[2] · b[2]

...
a[n] · b[n]

ā =
∑

b:a→b

|b|∑
i=1

b̄[i] · ∂b[i]

∂a

=
∑

b:a→b

b̄ if b = a + c for some c

b̄� c if b = a� c for some c
b̄� (1− b� b) if b = tanh(a)

6 / 11

Backpropagation, Illustrated

xn W d=Wxn a=b+d

b

Lnyn

e=tanh a

v
f=v⊙e g=∑hf[h]

Intermediate nodes are de-anonymized, to make notation easier.

7 / 11

Backpropagation, Illustrated

xn W d=Wxn a=b+d

b

Lnyn

e=tanh a

v
f=v⊙e g=∑hf[h]

1

∂Ln
∂Ln

= 1

7 / 11

Backpropagation, Illustrated

xn W d=Wxn a=b+d

b

Lnyn

e=tanh a

v
f=v⊙e g=∑hf[h]

1

ḡ

The form of ḡ will be loss-function specific (e.g., −2(yn − g) for squared loss).

7 / 11

Backpropagation, Illustrated

xn W d=Wxn a=b+d

b

Lnyn

e=tanh a

v
f=v⊙e g=∑hf[h]

1

ḡḡ⋅1

Sum.

7 / 11

Backpropagation, Illustrated

xn W d=Wxn a=b+d

b

Lnyn

e=tanh a

v
f=v⊙e g=∑hf[h]

1

ḡḡ⋅1
ḡ⋅e

ḡ⋅v

Product.

7 / 11

Backpropagation, Illustrated

xn W d=Wxn a=b+d

b

Lnyn

e=tanh a

v
f=v⊙e g=∑hf[h]

1

ḡḡ⋅1
ḡ⋅e

ā=ḡ⋅v ⊙(1−e⊙e) ḡ⋅v

Hyperbolic tangent.

7 / 11

Backpropagation, Illustrated

xn W d=Wxn a=b+d

b

Lnyn

e=tanh a

v
f=v⊙e g=∑hf[h]

1

ḡḡ⋅1
ḡ⋅e

ā=ḡ⋅v ⊙(1−e⊙e) ḡ⋅vā

ā

Sum.

7 / 11

Backpropagation, Illustrated

xn W d=Wxn a=b+d

b

Lnyn

e=tanh a

v
f=v⊙e g=∑hf[h]

1

ḡḡ⋅1
ḡ⋅e

ā=ḡ⋅v ⊙(1−e⊙e) ḡ⋅vāāxn
⊤

ā

Product.

7 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?

I number of training iterations
I learning rate for SGD
I number of hidden units (H)
I number of “layers” (and number of hidden units in each layer)
I amount of randomness in initialization
I regularization

I Interpretability?

8 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?

I number of training iterations
I learning rate for SGD
I number of hidden units (H)
I number of “layers” (and number of hidden units in each layer)
I amount of randomness in initialization
I regularization

I Interpretability?

8 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?

I number of training iterations
I learning rate for SGD
I number of hidden units (H)
I number of “layers” (and number of hidden units in each layer)
I amount of randomness in initialization
I regularization

I Interpretability?

8 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?
I number of training iterations

I learning rate for SGD
I number of hidden units (H)
I number of “layers” (and number of hidden units in each layer)
I amount of randomness in initialization
I regularization

I Interpretability?

8 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?
I number of training iterations
I learning rate for SGD

I number of hidden units (H)
I number of “layers” (and number of hidden units in each layer)
I amount of randomness in initialization
I regularization

I Interpretability?

8 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?
I number of training iterations
I learning rate for SGD
I number of hidden units (H)

I number of “layers” (and number of hidden units in each layer)
I amount of randomness in initialization
I regularization

I Interpretability?

8 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?
I number of training iterations
I learning rate for SGD
I number of hidden units (H)
I number of “layers” (and number of hidden units in each layer)

I amount of randomness in initialization
I regularization

I Interpretability?

8 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?
I number of training iterations
I learning rate for SGD
I number of hidden units (H)
I number of “layers” (and number of hidden units in each layer)
I amount of randomness in initialization

I regularization

I Interpretability?

8 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?
I number of training iterations
I learning rate for SGD
I number of hidden units (H)
I number of “layers” (and number of hidden units in each layer)
I amount of randomness in initialization
I regularization

I Interpretability?

8 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?
I number of training iterations
I learning rate for SGD
I number of hidden units (H)
I number of “layers” (and number of hidden units in each layer)
I amount of randomness in initialization
I regularization

I Interpretability?

8 / 11

Practical Notes

I Don’t initalize all parameters to zero; add some random noise.

I Random restarts: train K networks with different initializers, and you’ll get K
different classifiers of varying quality.

I Hyperparameters?
I number of training iterations
I learning rate for SGD
I number of hidden units (H)
I number of “layers” (and number of hidden units in each layer)
I amount of randomness in initialization
I regularization

I Interpretability? /

8 / 11

Challenge of Deeper Networks

Backpropagation aims to assign “credit” (or “blame”) to each parameter.
In a deep network, credit/blame is shared across all layers.
So parameters at early layers tend to have very small gradients.
One solution is to train a shallow network, then use it to initialize a deeper network,
perhaps gradually increasing network depth. This is called layer-wise training.

9 / 11

Radial Basis Function Networks

xn w1 sqd ×

γ1

Lnyn

exp

ŷ

weights

classifier output, “f”

input

correct output loss

w2 sqd ×

γ2

exp

v1
×

v2

∑

×

!

“activation”

“hidden units”

−

−

In the diagram, sqd(x,w) = ‖x−w‖22.
10 / 11

Radial Basis Function Networks

Generalizing to H hidden units:

f(x) = sign

(
H∑

h=1

v[h] · exp
(
−γh · ‖x−wh‖22

))

Each hidden unit is like a little “bump” in data space. wh is the position of the bump,
and γh is inversely proportional to its width.

10 / 11

A Gentle Reading on Backpropagation

http://colah.github.io/posts/2015-08-Backprop/

11 / 11

http://colah.github.io/posts/2015-08-Backprop/

