Machine Learning (CSE 446): Neural Networks

Sham M Kakade

© 2018

University of Washington cse446-staff@cs.washington.edu

<ロ> < 部> < 言> < 言> < 言> こ> < のへで 1/6

Classifiers We've Covered So Far

	decision boundary?	difficult part of learning?
decision trees	piecewise-axis-aligned	greedy split decisions
K-nearest neighbors	possibly very complex	indexing training data
perceptron	linear	iterative optimization method required
logistic regression	linear	iterative optimization method required
naïve Bayes	linear (see A4)	none

Classifiers We've Covered So Far

	decision boundary?	difficult part of learning?
decision trees	piecewise-axis-aligned	greedy split decisions
K-nearest neighbors	possibly very complex	indexing training data
perceptron	linear	iterative optimization method required
logistic regression	linear	iterative optimization method required
naïve Bayes	linear (see A4)	none

The next methods we'll cover permit nonlinear decision boundaries.

Inspiration from Neurons

Image from Wikimedia Commons.

Input signals come in through dendrites, output signal passes out through the axon.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

4/6

Hyperbolic tangent function, $\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$. Generalization: apply elementwise to a vector, so that $\tanh: \mathbb{R}^k \to (-1, 1)^k$.

> <ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 4/6

<ロ > < 回 > < 目 > < 目 > < 目 > < 目 > < 日 > < 4 / 6

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{h=1}^{H} v_h \cdot \tanh\left(\mathbf{w}_h \cdot \mathbf{x} + b_h\right)\right)$$
$$= \operatorname{sign}\left(\mathbf{v} \cdot \tanh\left(\mathbf{W}\mathbf{x} + \mathbf{b}\right)\right)$$

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{h=1}^{H} v_h \cdot \tanh\left(\mathbf{w}_h \cdot \mathbf{x} + b_h\right)\right)$$
$$= \operatorname{sign}\left(\mathbf{v} \cdot \tanh\left(\mathbf{W}\mathbf{x} + \mathbf{b}\right)\right)$$

► Two-layer networks allow decision boundaries that are nonlinear.

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{h=1}^{H} v_h \cdot \tanh\left(\mathbf{w}_h \cdot \mathbf{x} + b_h\right)\right)$$
$$= \operatorname{sign}\left(\mathbf{v} \cdot \tanh\left(\mathbf{W}\mathbf{x} + \mathbf{b}\right)\right)$$

- Two-layer networks allow decision boundaries that are nonlinear.
- It's fairly easy to show that "XOR" can be simulated (recall *conjunction* features from the "practical issues" lecture on 10/18).

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{h=1}^{H} v_h \cdot \tanh\left(\mathbf{w}_h \cdot \mathbf{x} + b_h\right)\right)$$
$$= \operatorname{sign}\left(\mathbf{v} \cdot \tanh\left(\mathbf{W}\mathbf{x} + \mathbf{b}\right)\right)$$

- Two-layer networks allow decision boundaries that are nonlinear.
- It's fairly easy to show that "XOR" can be simulated (recall *conjunction* features from the "practical issues" lecture on 10/18).
- Theoretical result: any continuous function on a bounded region in R^d can be approximated arbitrarily well, with a finite number of hidden units.

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{h=1}^{H} v_h \cdot \tanh\left(\mathbf{w}_h \cdot \mathbf{x} + b_h\right)\right)$$
$$= \operatorname{sign}\left(\mathbf{v} \cdot \tanh\left(\mathbf{W}\mathbf{x} + \mathbf{b}\right)\right)$$

- ▶ Two-layer networks allow decision boundaries that are nonlinear.
- It's fairly easy to show that "XOR" can be simulated (recall *conjunction* features from the "practical issues" lecture on 10/18).
- ► Theoretical result: any continuous function on a bounded region in **R**^d can be approximated arbitrarily well, with a finite number of hidden units.
- The number of hidden units affects how complicated your decision boundary can be and how easily you will overfit.

Parameters: $\mathbf{W} \in \mathbb{R}^{H \times d}$, $\mathbf{b} \in \mathbb{R}^{H}$, and $\mathbf{v} \in \mathbb{R}^{H}$

If we choose a differentiable loss, then the the whole function will be differentiable with respect to all parameters.

- If we choose a differentiable loss, then the the whole function will be differentiable with respect to all parameters.
- Because of the squashing function, which is not convex, the overall learning problem is not convex.

- If we choose a differentiable loss, then the the whole function will be differentiable with respect to all parameters.
- Because of the squashing function, which is not convex, the overall learning problem is not convex.
- ▶ What does (stochastic) (sub)gradient descent do with non-convex functions?

- If we choose a differentiable loss, then the the whole function will be differentiable with respect to all parameters.
- Because of the squashing function, which is not convex, the overall learning problem is not convex.
- What does (stochastic) (sub)gradient descent do with non-convex functions? It finds a *local* minimum.
- ► To calculate gradients, we need to use the chain rule from calculus.

- If we choose a differentiable loss, then the the whole function will be differentiable with respect to all parameters.
- Because of the squashing function, which is not convex, the overall learning problem is not convex.
- What does (stochastic) (sub)gradient descent do with non-convex functions? It finds a *local* minimum.
- ► To calculate gradients, we need to use the chain rule from calculus.
- ► Special name for (S)GD with chain rule invocations: **backpropagation**.