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Alternate View of PCA: Minimizing Reconstruction Error

Assume that the data are
centered.
Find a line which minimizes the
squared reconstruction error.
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Alternate View: Minimizing Reconstruction Error with K-dim subspace.

Equivalent (“dual”) formulation of PCA: find an “orthonormal basis” u1,u2, . . .uK

which minimizes the total reconstruction error on the data:

argmin
orthonormal basis:u1,u2,...uK

1

N

∑
i

(xi − Proju1,...uK
(xi))

2

Recall the projection of x onto K-orthonormal basis is:

Proju1,...uK
(x) =

K∑
j=1

(ui · x)ui

The SVD “simultaneously” finds all u1,u2, . . .uK
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Projection and Reconstruction: the one dimensional case

I Take out mean µ:

I Find the “top” eigenvector u of the covariance matrix.

I What are your projections?

I What are your reconstructions, X̂ = [x̂1|x̂2| · · · |x̂N ]>?

I What is your reconstruction error of doing nothing (K = 0) and using K = 1?

1

N

∑
i

(xi − µ)2 =
1

N

∑
i

(xi − x̂i)
2 =

I Reduction in error by using a k-dim PCA projection:
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PCA vs. Clustering

Summarize your data with fewer points or fewer dimensions?
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Loss functions
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Today
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Perceptron

Perceptron Algorithm: A model and an algorithm, rolled into one.
Isn’t there a more principled methodology to derive algorithms?
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What we (“naively”) want:

“Minimize training-set error rate”:

min
w,b

1

N

N∑
n=1

Jyn(w · xn + b) ≤ 0K︸ ︷︷ ︸
zero-one loss on a point n

This problem is NP-hard; even for a (multiplicative)
approximation.

margin = y · (w · x + b)

loss

Why is this loss function so unwieldy?
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Relax!

I The mis-classification optimization problem:

min
w

1

N

N∑
n=1

Jyn(w · xn) ≤ 0K

I Instead, let’s try to choose a “reasonable” loss function `(yn,w · x) and then try
to solve the relaxation:

min
w

1

N

N∑
n=1

`(yn,w · xn)

5 / 13



What is a good “relaxation”?

I Want that minimizing our surrogate loss helps with minimizing the
mis-classification loss.

I idea: try to use a (sharp) upper bound of the zero-one loss by `:

Jy(w · x) ≤ 0K ≤ `(y,w · x)

I want our relaxed optimization problem to be easy to solve.
What properties might we want for `(·)?

I differentiable? sensitive to changes in w?
I convex?
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The square loss! (and linear regression)

I The square loss: `(y,w · x) = (y −w · x)2.

I The relaxed optimization problem:

min
w

1

N

N∑
n=1

(yn −w · xn)
2

I nice properties:
I for binary classification, it is a an upper bound on the zero-one loss.
I It makes sense more generally, e.g. if we want to predict real valued y.
I We have a convex optimization problem.

I For classification, what is your decision rule using a w?
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The square loss as an upper bound

I We have:
Jy(w · x) ≤ 0K ≤ (y −w · x)2

I Easy to see, by plotting:
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Remember this problem?
Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin

Input: a row in this table.

Goal: predict whether mpg is < 23
(“bad” = 0) or above (“good” =
1) given the input row.

Predicting a real y (often)
makes more sense.
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A better (convex) upper bound

I The logistic loss:

`logistic(y,w · x) = log (1 + exp(−yw · x)) .

I We have:
Jy(w · x) ≤ 0K ≤ constant ∗ `logistic(y,w · x)

I Again, easy to see, by plotting:
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Least squares: let’s minimize it!

I The optimization problem:

min
w

1

N

N∑
n=1

(yn −w · xn)
2 =

min
w
‖Y −X>w‖2

where Y is an n-vector and X is our n× d data matrix.

I How do we interpret X>w?

The solution is the least squares estimator:

wleast squares = (X>X)−1X>Y
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Matrix calculus proof: scratch space
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Matrix calculus proof: scratch space
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Remember your linear system solving!
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Lots of questions:

I What could go wrong with least squares?
I Suppose we are in “high dimensions”: more dimensions than data points.
I Inductive bias: we need a way to control the complexity of the model.

I How do we minimize (sum) logistic loss?

I Optimization: how do we do this all quickly?
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