Machine Learning (CSE 446): Learning as Minimizing Loss; Least Squares

Sham M Kakade

© 2018

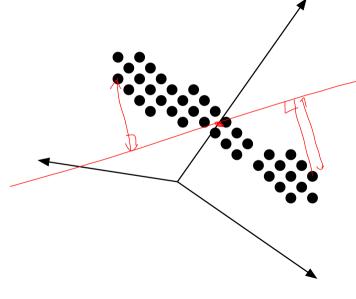
HMZ Ave Thurs 1

University of Washington cse446-staff@cs.washington.edu

1/13

Review

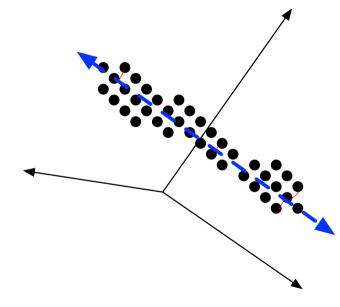
Alternate View of PCA: Minimizing Reconstruction Error



Assume that the data are *centered*.

Find a line which minimizes the squared reconstruction error.

Alternate View of PCA: Minimizing Reconstruction Error



Assume that the data are *centered*.

Find a line which minimizes the squared reconstruction error.

Alternate View: Minimizing Reconstruction Error with K-dim subspace.

Equivalent ("dual") formulation of PCA: find an "orthonormal basis" $u_1, u_2, \ldots u_K$ which minimizes the total reconstruction error on the data:

$$\underset{\text{orthonormal basis:}\mathbf{u}_{1},\mathbf{u}_{2},\ldots\mathbf{u}_{K}}{\operatorname{argmin}} \quad \frac{1}{N}\sum_{i}(\mathbf{x}_{i}-\operatorname{Proj}_{\mathbf{u}_{1},\ldots\mathbf{u}_{K}}(\mathbf{x}_{i}))^{2}$$

Recall the projection of x onto K-orthonormal basis is:

$$\operatorname{Proj}_{\mathbf{u_1},\ldots\mathbf{u_K}}(\mathbf{x}) = \sum_{j=1}^{K} (\mathbf{u_i} \cdot \mathbf{x}) \mathbf{u_i}$$

The SVD "simultaneously" finds all $\mathbf{u_1}, \mathbf{u_2}, \ldots \mathbf{u_K}$

Projection and Reconstruction: the one dimensional case

• Take out mean μ : $\chi \leftarrow \chi - M$

lc=1 >,

- \blacktriangleright Find the "top" eigenvector u of the covariance matrix.
- What are your projections? $(\checkmark \cdot \checkmark)$
- $\hat{X}_n = (X_n \mu) \cdot \mu + \mu$ • What are your reconstructions, $\widehat{\mathbf{X}} = [\widehat{\mathbf{x}}_1 | \widehat{\mathbf{x}}_2 | \cdots | \widehat{\mathbf{x}}_N]^\top$?
- What is your reconstruction error of doing nothing (K = 0) and using K = 1?

$$\frac{1}{N}\sum_{i}(\mathbf{x}_{i}-\mu)^{2} = \frac{\lambda_{i}+\cdots\lambda_{i}}{N} \quad \frac{1}{N}\sum_{i}(\mathbf{x}_{i}-\widehat{\mathbf{x}}_{i})^{2} = \frac{\lambda_{i}+\cdots+\lambda_{i}}{N}$$

 $k = \lambda_1 + \cdots + \lambda_k$

► **Reduction in error** by using a k-dim PCA projection:

PCA vs. Clustering

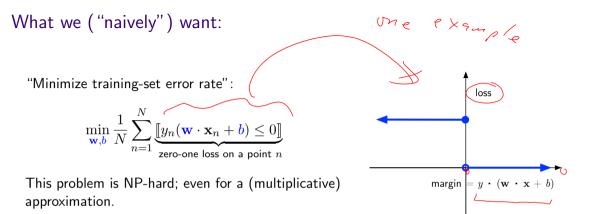
Summarize your data with fewer points or fewer dimensions?

Loss functions

Today

Perceptron

PERCEPTRON ALGORITHM: A model and an algorithm, rolled into one. Isn't there a more principled methodology to derive algorithms?



Why is this loss function so unwieldy?

Relax!

► The mis-classification optimization problem:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \llbracket y_n(\mathbf{w} \cdot \mathbf{x}_n) \leq 0 \rrbracket$$

▶ Instead, let's try to choose a "reasonable" loss function $\ell(y_n, \mathbf{w} \cdot \mathbf{x})$ and then try to solve the **relaxation**:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, \mathbf{w} \cdot \mathbf{x}_n)$$

<ロ > < 部 > < 言 > < 言 > 言 の Q (~ 5/13)

What is a good "relaxation"?

- Want that minimizing our surrogate loss helps with minimizing the mis-classification loss.
 - idea: try to use a (sharp) upper bound of the zero-one loss by ℓ :

 $\llbracket y(\mathbf{w} \cdot \mathbf{x}) \le 0 \rrbracket \le \ell(y, \mathbf{w} \cdot \mathbf{x})$

► want our relaxed optimization problem to be easy to solve. What properties might we want for l(·)?

What is a good "relaxation"?

- Want that minimizing our surrogate loss helps with minimizing the mis-classification loss.
 - idea: try to use a (sharp) upper bound of the zero-one loss by ℓ :

$$\llbracket y(\mathbf{w} \cdot \mathbf{x}) \le 0 \rrbracket \le \ell(y, \mathbf{w} \cdot \mathbf{x})$$

- ► want our relaxed optimization problem to be easy to solve. What properties might we want for l(·)?
 - differentiable? sensitive to changes in w?
 - convex?

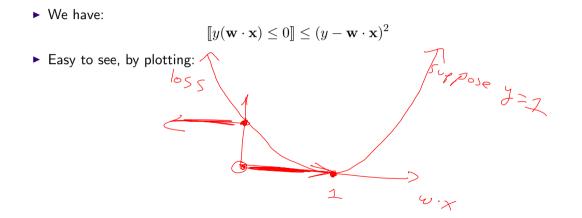
The square loss! (and linear regression)

- The square loss: $\ell(y, \mathbf{w} \cdot \mathbf{x}) = (y \mathbf{w} \cdot \mathbf{x})^2$.
- ► The relaxed optimization problem:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w} \cdot \mathbf{x}_n)^2$$

- nice properties:
 - ▶ for binary classification, it is a an upper bound on the zero-one loss.
 - ▶ It makes sense more generally, e.g. if we want to predict real valued y.
 - We have a convex optimization problem.
- ► For classification, what is your decision rule using a w?

The square loss as an upper bound



Remember this problem?

Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin												
18.0	8	307.0	130.0	3504.	12.0	70	1					
15.0	8	350.0	165.0	3693.	11.5	70	1					
18.0	8	318.0	150.0	3436.	11.0	70	1					
16.0	8	304.0	150.0	3433.	12.0	70	1					
17.0	8	302.0	140.0	3449.	10.5	70	1					
				4341.		70	1					
15.0	8	429.0	198.0		10.0							
14.0	8	454.0	220.0	4354.	9.0	70	1					
14.0	8	440.0	215.0	4312.	8.5	70	1					
14.0	8	455.0	225.0	4425.	10.0	70	1					
15.0	8	390.0	190.0	3850.	8.5	70	1					
15.0	8	383.0	170.0	3563.	10.0	70	1					
14.0	8	340.0	160.0	3609.	8.0	70	1					
15.0	8	400.0	150.0	3761.	9.5	70	1					
14.0	8	455.0	225.0	3086.	10.0	70	1					
24.0	4	113.0	95.00	2372.	15.0	70	3					
22.0	6	198.0	95.00	2833.	15.5	70	1					
18.0	6	199.0	97.00	2774.	15.5	70	1					
21.0	6	200.0	85.00	2587.	16.0	70	1					
27.0	4	97.00	88.00	2130.	14.5	70	3					
26.0	4	97.00	46.00	1835.	20.5	70	2					
25.0	4	110.0	87.00	2672.	17.5	70	2					
24.0	4	107.0	90.00	2430.	14.5	70	2					
24.0	-	10/10	50.00	2430.	14.0	10	2					

Input: a row in this table.

Goal: predict whether mpg is < 23("bad" = 0) or above ("good" =1) given the input row.

Remember this problem?

Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin												
18.0	8	307.0	130.0	3504.	12.0	70	1					
15.0	8	350.0	165.0	3693.	11.5	70	1					
18.0	8	318.0	150.0	3436.	11.0	70	1					
16.0	8	304.0	150.0	3433.	12.0	70	1					
17.0	8	302.0	140.0	3449.	10.5	70	1					
15.0	8	429.0	198.0	4341.	10.0	70	1					
14.0	8	454.0	220.0	4354.	9.0	70	1					
14.0	8	440.0	215.0	4312.	8.5	70	1					
14.0	8	455.0	225.0	4425.	10.0	70	1					
15.0	8	390.0	190.0	3850.	8.5	70	1					
15.0	8	383.0	170.0	3563.	10.0	70	1					
14.0	8	340.0	160.0	3609.	8.0	70	1					
15.0	8	400.0	150.0	3761.	9.5	70	1					
14.0	8	455.0	225.0	3086.	10.0	70	1					
24.0	4	113.0	95.00	2372.	15.0	70	3					
22.0	6	198.0	95.00	2833.	15.5	70	1					
18.0	6	199.0	97.00	2774.	15.5	70	1					
21.0	6	200.0	85.00	2587.	16.0	70	1					
27.0	4	97.00	88.00	2130.	14.5	70	3					
26.0	4	97.00	46.00	1835.	20.5	70	2					
25.0	4	110.0	87.00	2672.	17.5	70	2					
24.0	4	107.0	90.00	2430.	14.5	70	2					

Input: a row in this table.

Goal: predict whether mpg is < 23("bad" = 0) or above ("good" =1) given the input row.

Predicting a real y (often) makes more sense.

A better (convex) upper bound -4 W.X ► The logistic loss: $\ell^{\text{logistic}}(y, \mathbf{w} \cdot \mathbf{x}) = \log (1 + \exp(-y\mathbf{w} \cdot \mathbf{x})).$ soppose y=1 We have: $\llbracket y(\mathbf{w} \cdot \mathbf{x}) \le 0 \rrbracket \le \text{constant} * \ell^{\text{logistic}}(y, \mathbf{w} \cdot \mathbf{x})$ ► Again, easy to see, by plotting: 1055

4.2

Least squares: let's minimize it! T-1poin this should be

► The optimization problem:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w} \cdot \mathbf{x}_n)^2 = \min_{\mathbf{w}} \|Y - X^{\mathbf{v}} \mathbf{w}\|^2 \quad \mathbf{u}$$

where Y is an *n*-vector and X is our $n \times d$ data matrix.

• How do we interpret $X^{\P} \mathbf{w}$?

$$\left[\chi_{W}\right]_{h} = \omega \cdot \chi_{h}$$

nxil rector

Least squares: let's minimize it!

► The optimization problem:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w} \cdot \mathbf{x}_n)^2 = \\\min_{\mathbf{w}} \|Y - X^{\P} \mathbf{w}\|^2$$

where Y is an *n*-vector and X is our $n \times d$ data matrix.

• How do we interpret $X^{\clubsuit} \mathbf{w}$?

The solution is the **least squares estimator**:

$$\mathbf{w}^{\text{least squares}} = (X^{\top}X)^{-1}X^{\top}Y$$

4回 > 4回 > 4 目 > 4 目 > 4 目 > 目 の Q で 11/13

Matrix calculus proof: scratch space $\chi' \chi_w$ $|| \chi - \chi_w ||^2 || \chi - 2 || \chi_w + || \chi_w ||^2$ $\frac{\partial}{\partial w} \| \|^{2} = O - 2X^{T}Y + 2(X^{T}X) w$ $(X^T X) = X^T Y$

<ロト < 部 ト < 言 ト < 言 ト 言 の Q () 12 / 13 Matrix calculus proof: scratch space

<ロト < 部 > < 言 > < 言 > こ > < こ > こ ? へ (~ 12/13 Remember your linear system solving!

<ロト < 部 > < 言 > < 言 > こ > < こ > こ ? へ (~ 12/13

Lots of questions:

- What could go wrong with least squares?
 - ► Suppose we are in "high dimensions": more dimensions than data points.
 - Inductive bias: we need a way to control the complexity of the model.
- How do we minimize (sum) logistic loss?
- Optimization: how do we do this all quickly?