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Announcements

I Assignment 2 due tomo.

I Midterm: Weds, Feb 7th.

I Qz section: review

I Today:
Regularization and Optimization!
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Review
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Relax!

I The mis-classification optimization problem:

min
w

1

N

N∑
n=1

Jyn(w · xn) ≤ 0K

I Instead, use loss function `(yn,w · x) and solve arelaxation:

min
w

1

N

N∑
n=1

`(yn,w · xn)

I What do we want?

I How do we get it?
speed? accuracy?
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Some loss functions:

I The square loss:
`(y,w · x) = (y −w · x)2

I The logistic loss:

`logistic(y,w · x) = log (1 + exp(−yw · x)) .

I They both “upper bound” the mistake rate.
I Instead:

I Instead, we let’s care about “regression” where y is real valued.
I What if we have multiple classes? (not just binary classification?)
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Least squares: let’s minimize it!

I The optimization problem:

min
w

1

N

N∑
n=1

(yn −w · xn)
2 =

min
w
‖Y −Xw‖2

where Y is an n-vector and X is our n× d data matrix.

I The solution is the least squares estimator:

wleast squares = (X>X)−1X>Y
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Matrix calculus proof: scratch space
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Matrix calculus proof: scratch space
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Let’s remember our linear system solving!
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Today
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Least squares: What could go wrong?!

I The optimization problem:

min
w

1

N

N∑
n=1

(yn −w · xn)
2 =

min
w
‖Y −Xw‖2

where Y is an n-vector and X is our n× d data matrix.

I The solution is the least squares estimator:

wleast squares = (X>X)−1X>Y

What if d is bigger than n? Even if not?
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What could go wrong?

Suppose d > n:

What about n > d?

I What happens if features are very correlated?
(e.g. ’rows/columns in our matrix are co-linear.)
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linear system solving: scratch space
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A fix: Regularization

I Regularize the optimization problem:

min
w

1

N

N∑
n=1

(yn −w · xn)
2 + λ‖w‖2 =

min
w
‖Y −X>w‖2 + λ‖w‖2

I This particular case: “Ridge” Regression, Tikhonov regularization

I The solution is the least squares estimator:

wleast squares =

(
1

N
X>X + λI

)−1( 1

N
X>Y

)
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The “general” approach

I The regularized optimization problem:

min
w

1

N

N∑
n=1

`(yn,w · xn) +R(w)

I Penalty some w more than others.
Example: R(w) = ‖w‖2

How do we find a solution quickly?

10 / 12



Remember: convexity
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Gradient Descent

I Want to solve:

min
z
F (z)

I How should we update z?

11 / 12

Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner




Gradient Descent

Data: function F : Rd → R, number of iterations K, step sizes 〈η(1), . . . , η(K)〉
Result: z ∈ Rd

initialize: z(0) = 0;
for k ∈ {1, . . . ,K} do

z(k) = z(k−1) − η(k) · ∇zF (z
(k−1));

end

return z(K);
Algorithm 1: GradientDescent
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Gradient Descent: Convergence

I Letting z∗ = argminz F (z) denote the global minimum

I Let z(k) be our parameter after k updates.

I Thm: Suppose F is convex and “L-smooth”. Using a fixed step size η ≤ 1
L , we

have:

F (z(k))− F (z∗) ≤ ‖z
(0) − z∗‖2

η · k

That is the convergence rate is O( 1k ).
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Smoothness and Gradient Descent Convergence

I Smooth functions: for all z, z′

‖∇F (z)−∇F (z′)‖ ≤ L‖z − z′‖

I Proof idea:

1. If our gradient is large, we will make good progress decreasing our function value:

2. If our gradient is small, we must have value near the optimal value:

12 / 12


