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Announcement

I Qz section tomo: (basic) probability and linear algebra review
I Today:

I review
I some limits of learning
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The “i.i.d.” Supervised Learning Setup

I Let ` be a loss function; `(y, ŷ) is our loss by predicting ŷ when y is the correct
output.

I Let D(x, y) define the (unknown) underlying probability of input/output pair
(x, y), in “nature.” We never “know” this distribution.

I The training data D = 〈(x1, y1), (x2, y2), . . . , (xN , yN )〉 are assumed to be
identical, independently, distributed (i.i.d.) samples from D.

I We care about our expected error (i.e. the expected loss, the “true” loss,
...) with regards to the underlying distribution D.

I Goal: find a hypothesis which as has “low” expected error, using the training set.

2 / 17

Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner


Kira Goldner




Training error

I The training error of hypothesis f is f ’s average error on the training data:

ε̂(f) =
1

N

N∑
n=1

`(yn, f(xn))

I In contrast, classifier f ’s true expected loss:

ε(f) =
∑
(x,y)

D(x, y) · `(y, f(x)) = E(x,y)∼D[`(y, f(x))]

I Idea: Use the training error ε̂(f) as an empirical approximation to ε(f).
And hope that this approximation is good!

I For any fixed f , the training error is an unbiased estimate of the true error.
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Overfitting: this is the fundamental problem of ML

I Let f̂ be the output of training algorithm.

I The training error of f̂ is (almost) never an unbiased estimate of the true error.
I It is usually a gross underestimate.

I The generalization error of our algorithm is its true error - training error:

ε(f̂)− ε̂(f̂)

I Overfitting, more formally: large generalization error means we have overfit.
I We would like both:

I our training error, ε̂(f̂), to be small
I our generalization error to be small

I If both occur, then we have low expected error :)

I It is usually easy to get one of these two to be small.
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Danger: Overfitting

error rate
(lower is better)

depth of the decision tree

training data

unseen data

overfitting
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Today’s Lecture

5 / 17



Test sets and Dev. Sets

I use test set, i.i.d. data sampled D, to estimate the expected error.

I Don’t touch your test data to learn!
not for hyperparam tuning, not for modifying your hypothesis!

I Keep your test set to always give you accurate (and unbiased) estimates of how
good your hypothesis is.

I Hyperparameters are params of our algorithm/pseudo-code
I sometimes hyperparameters monotonically make our training error lower

e.g. decision tree maximal width and maximal depth.

I How do we set hyperparams?
For some hyperparams:

I make a dev set, i.i.d. from D (hold aside some of your training set)
I learn with training set (by trying different hyperparams); then check on your dev set.
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Example: Avoiding Overfitting by “Early Stopping” in Decision Trees

I Set a maximum tree depth dmax .
(also need to set a maximum width w)

I Only consider splits that decrease error by at least some ∆.

I Only consider splitting a node with more than Nmin examples.

In each case, we have a hyperparameter (dmax , w,∆, Nmin), which you should tune
on development data.
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One Limit of Learning: The “No Free Lunch Theorem”

I We want a learning algorithm which learns very quickly!

I “No Free Lunch Theorem”: (Informally) any learning algorithm that learns with
very training set size on one class of problems, must do much worse on another
class of problems.

I inductive bias: But, we do want to bias our algorithms in certain ways. Let’s
see...
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An Exercise
Following ?, chapter 2.

Class A Class B
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An Exercise
Following ?, chapter 2.

Test
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Inductive Bias

I Just as you had a tendency to focus on a certain type of function f , machine
learning algorithms correspond to classes of functions (F) and preferences within
the class.

I You want your algorithm to be “biased” towards the correct classifier.
BUT this means it must do worse on other problems.

I Example Bias: shallow decision trees: “use a small number of features” favors one
type of bias.
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Another Limit of Learning: The Bayes Optimal Hypothesis

I The best you could hope to do:

f (BO)(x) = argmin
f(x)

ε(f)

You cannot obtain lower loss than ε(fBO).

I Example: Let’s consider classification:
Theorem: For classification (binary or multi-class), the Bayes optimal classifier is:

f (BO)(x) = argmax
y
D(x, y) ,

and it achieves minimal zero/one error (`(y, ŷ) = Jy 6= ŷK) of any classifier.
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Proof

I Consider (deterministic) f ′ that claims to be better than f (BO) and x such that
f (BO)(x) 6= f ′(x).

I Probability that f ′ makes an error on this input:
(∑

y D(x, y)
)
−D(x, f ′(x)).

I Probability f (BO) makes an error on this input:
(∑

y D(x, y)
)
−D(x, f (BO)(x)).

I By definition,

D(x, f (BO)(x)) = max
y
D(x, y) ≥ D(x, f ′(x))

⇒

(∑
y

D(x, y)

)
−D(x, f (BO)(x)) ≤

(∑
y

D(x, y)

)
−D(x, f ′(x))

I This must hold for all x. Hence f ′ is no better than f (BO).
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The Bayes Optimal Hypothesis for the Square Loss

I For the quadratic loss and real valued y:

ε(f) = E(x,y)∼D(y − f(x))2

I Theorem: The Bayes optimal hypothesis for the square loss is:

f (BO)(x) = E[y|x]

(where the conditional expectation is with respect to D).
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Unavoidable Error

I Noise in the features (we don’t want to “fit” the noise!)

I Insufficient information in the available features (e.g., incomplete data)

I No single correct label (e.g., inconsistencies in the data-generating process)

These have nothing to do with your choice of learning algorithm.
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General Recipe

The cardinal rule of machine learning: Don’t touch your test data.

If you follow that rule, this recipe will give you accurate information:

1. Split data into training, development, and test sets.

2. For different hyperparameter settings:

2.1 Train on the training data using those hyperparameter values.
2.2 Evaluate loss on development data.

3. Choose the hyperparameter setting whose model achieved the lowest development
data loss.
Optionally, retrain on the training and development data together.

4. Evaluate that model on test data.
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Design Process for ML Applications

example
1 real world goal increase revenue
2 mechanism show better ads
3 learning problem will a user who queries q click ad a?
4 data collection interaction with existing system
5 collected data query q, ad a, ±click
6 data representation (q word, a word) pairs
7 select model family decision trees up to 20
8 select training/dev. data September
9 train and select hyperparameters single decision tree

10 make predictions on test set October
11 evaluate error zero-one loss (±click)
12 deploy $?
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