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Can We Have Nonlinearity and Convexity?

‘expressiveness convexity

Linear classifiers ® ®
Neural networks ® ®
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Can We Have Nonlinearity and Convexity?

‘expressiveness convexity

Linear classifiers ® ®)
Neural networks ® ®

Kernel methods: a family of approaches that give us nonlinear decision boundaries
without giving up convexity.
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Notation

Let x = (z1, 22, ...

,.Td>.
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Conjunctive/Product Features
See slides 23-32 in the 10/13 “practical issues” lecture.

Consider two binary features, ¢; and ¢;/. A new conjunction feature can be defined by:

ding () = ¢j(x) N pj(x) equivalently z44q =5 Axj
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Conjunctive/Product Features
See slides 23-32 in the 10/13 “practical issues” lecture.
Consider two binary features, ¢; and ¢;/. A new conjunction feature can be defined by:

ding(x) = ¢j(x) N pj(x) equivalently z441 =25 Axy

Generalization: take the product of two features.
Bigger generalization: take all the products!

¢(x) = vector((1;x)(1;x) )

= < 17 Ty, z2, sy Zd,
2
X, x7, Xy - X2, ceey X1 - Xd,
2
€2, x2 -1, Ty, sy €2+ Xd,
Ld—1, Id—1'T1, Td—1-T2, ---5, Id—1"Td,

2
Zd, Xq - T, Zq -T2, cee Ty >



The Kernel Trick

Some learning algorithms, like the perceptron, can be rewritten so that the only thing
you do with feature vectors is take inner products between them.
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The Kernel Trick

Some learning algorithms, like the perceptron, can be rewritten so that the only thing
you do with feature vectors is take inner products between them.

Note that: ¢(x) - ¢(v)

= 1
+ 101
+ X2y
+
+

LdVd

_l’_

_l’_

I1v1
2,2
AICH

L2X1V201

TqI1vqV1

+ T2U2
+  T1x20102
+ r3v3

+  Tgxov4V2

=1+2- Zx]vj + szﬁk’vﬂk

=1 k=1

:1+2~X-V+(X-V)2

:(1+X'V)2

Zqvd
L1LqV1V4
T2 U2V

2,2
TqVq
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Kernels

A kernel function (implicitly) computes:

K(x,v) = ¢(x) - ¢(v)

for some ¢. Typically it is cheap to compute K (-,-), and we never explicitly represent
¢(v) for any vector v.
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Kernels
A kernel function (implicitly) computes:

K(x,v) = ¢(x) - ¢(v)
for some ¢. Typically it is cheap to compute K (-,-), and we never explicitly represent
¢(v) for any vector v.
Some kernels:

quadratic  K99(x v) = (1 +x-v)?
cubic KP¢(x,v) = (1+x-v)?
x,v)=(1+x-v)P

2
= exp (—7 Il — V”Q)
=tanh(l +x-v) (not a kernel)

d
all conjunctions K2 <(x v) = H(l +2jv5) (for binary features)

J]=

—
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Perceptron Learning Algorithm

Data: D = ((xy, yn))fy:l, number of epochs E
Result: weights w and bias b
initialize: w =0 and b = 0;
forec {1,...,E} do
for n € {1,..., N}, in random order do
# predict
g = sign (w - x,, + b);
if § # y, then
# update
W < W + Y, - Xn»
b+ b+ yn;

end

end
end
return w, b

Algorithm 1: PERCEPTRONTRAIN
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Perceptron Representer Theorem

At every stage of learning, there exist (a1, o, ..., an) such that

N
_ _ T
w = ap X, = X
n=1

In other words, w is always in the span of the training data.
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Perceptron Learning Algorithm (with ¢)

Data: D = ((x, yn))fy:l, number of epochs E
Result: weights w and bias b
initialize: w =0 and b = 0;
forec {1,...,E} do
for n € {1,..., N}, in random order do
# predict
= sign (w - () + b);
if § #£ y, then
# update

W W+ yp - O(Xn);
b+ b+ yn;

end

end

end

return w, b

Algorithm 2: PERCEPTRONTRAIN with ¢ (explicit)



Prediction

§ = sign (w - d(xn) +0)

N
= sign <Z ;- (i) - P(xn) + b)

=1

N
ZO@ . K(xi,xn) +b>

i=1

= sign
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The Update

winew) . (old) + yp - ¢( n)
N
Zainew D(x;) Za (old) d(xi) + yn - P(xn)
=1

Z Ozz(new) C(xi) + ™ p(xp) Z O‘iOId CB(xi) + () + ) - B(xn)
i#n i#n
(new) ¢( ) ( (Old) + Yn ) ¢(Xn)

alre™) ol 4y,
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¢(x,) is Never Explicitly Computed!

N
predict: ¢ = sign (Z a; - K(x4, %) + b>

i=1

. a(old)

update: /("W Y 4y,

n

We only calculate inner products of such vectors.
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Kernelized Perceptron Learning Algorithm

Data: D = ((x, yn)>7]¥:11 number of epochs E
Result: weights « and bias b
initialize: @« =0 and b = 0;

forec {1,...,E} do

for n € {1,..., N}, in random order do
7 predict
g =sign (X0 i+ K (xi, %) +b);
if § # y, then
# update
Qp < O + Yn,
b+ b+ yn;
end
end
end
return o, b

Algorithm 3: KERNELIZEDPERCEPTRONTRAIN
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