Machine Learning (CSE 446):

Kernel Methods
Sham M Kakade
© 2018

University of Washington
csed446-staff@cs.washington.edu

13

Can We Have Nonlinearity and Convexity?

‘expressiveness convexity

Linear classifiers ® ®
Neural networks ® ®

13

Can We Have Nonlinearity and Convexity?

‘expressiveness convexity

Linear classifiers ® ®)
Neural networks ® ®

Kernel methods: a family of approaches that give us nonlinear decision boundaries
without giving up convexity.

13

Notation

Let x = (z1, 22, ...

,.Td>.

13

Conjunctive/Product Features
See slides 23-32 in the 10/13 “practical issues” lecture.

Consider two binary features, ¢; and ¢;/. A new conjunction feature can be defined by:

ding () = ¢j(x) N pj(x) equivalently z44q =5 Axj

13

Conjunctive/Product Features
See slides 23-32 in the 10/13 “practical issues” lecture.

Consider two binary features, ¢; and ¢;. A new conjunction feature can be defined by:

dinj'(x) = dj(x) A pjr(x) equivalently zg41 =z Ay

Generalization: take the product of two features.

13

Conjunctive/Product Features
See slides 23-32 in the 10/13 “practical issues” lecture.
Consider two binary features, ¢; and ¢;/. A new conjunction feature can be defined by:

ding(x) = ¢j(x) N pj(x) equivalently z441 =25 Axy

Generalization: take the product of two features.
Bigger generalization: take all the products!

¢(x) = vector((1;x)(1;x))

= < 17 Ty, z2, sy Zd,
2
X, x7, Xy - X2, ceey X1 - Xd,
2
€2, x2 -1, Ty, sy €2+ Xd,
Ld—1, Id—1'T1, Td—1-T2, ---5, Id—1"Td,

2
Zd, Xq - T, Zq -T2, cee Ty >

The Kernel Trick

Some learning algorithms, like the perceptron, can be rewritten so that the only thing
you do with feature vectors is take inner products between them.

5/13

The Kernel Trick

Some learning algorithms, like the perceptron, can be rewritten so that the only thing
you do with feature vectors is take inner products between them.

Note that: ¢(x) - ¢(v)

= 1
+ 101
+ X2y
+
+

LdVd

l’

l’

I1v1
2,2
AICH

L2X1V201

TqI1vqV1

+ T2U2
+ T1x20102
+ r3v3

+ Tgxov4V2

=1+2- Zx]vj + szﬁk’vﬂk

=1 k=1

:1+2~X-V+(X-V)2

:(1+X'V)2

Zqvd
L1LqV1V4
T2 U2V

2,2
TqVq

5/13

Kernels

A kernel function (implicitly) computes:

K(x,v) = ¢(x) - ¢(v)

for some ¢. Typically it is cheap to compute K (-,-), and we never explicitly represent
¢(v) for any vector v.

13

Kernels
A kernel function (implicitly) computes:

K(x,v) = ¢(x) - ¢(v)
for some ¢. Typically it is cheap to compute K (-,-), and we never explicitly represent
¢(v) for any vector v.
Some kernels:

quadratic K99(x v) = (1 +x-v)?
cubic KP¢(x,v) = (1+x-v)?
x,v)=(1+x-v)P

2
= exp (—7 Il — V”Q)
=tanh(l +x-v) (not a kernel)

d
all conjunctions K2 <(x v) = H(l +2jv5) (for binary features)

J]=

—

13

Perceptron Learning Algorithm

Data: D = ((xy, yn))fy:l, number of epochs E
Result: weights w and bias b
initialize: w =0 and b = 0;
forec {1,...,E} do
for n € {1,..., N}, in random order do
predict
g = sign (w - x,, + b);
if § # y, then
update
W < W + Y, - Xn»
b+ b+ yn;

end

end
end
return w, b

Algorithm 1: PERCEPTRONTRAIN

13

Perceptron Representer Theorem

At every stage of learning, there exist (a1, o, ..., an) such that

N
_ _ T
w = ap X, = X
n=1

In other words, w is always in the span of the training data.

13

Perceptron Learning Algorithm (with ¢)

Data: D = ((x, yn))fy:l, number of epochs E
Result: weights w and bias b
initialize: w =0 and b = 0;
forec {1,...,E} do
for n € {1,..., N}, in random order do
predict
= sign (w - () + b);
if § #£ y, then
update

W W+ yp - O(Xn);
b+ b+ yn;

end

end

end

return w, b

Algorithm 2: PERCEPTRONTRAIN with ¢ (explicit)

Prediction

§ = sign (w - d(xn) +0)

N
= sign <Z ;- (i) - P(xn) + b)

=1

N
ZO@ . K(xi,xn) +b>

i=1

= sign

10/13

The Update

winew) . (old) + yp - ¢(n)
N
Zainew D(x;) Za (old) d(xi) + yn - P(xn)
=1

Z Ozz(new) C(xi) + ™ p(xp) Z O‘iOId CB(xi) + () +) - B(xn)
i#n i#n
(new) ¢() ((Old) + Yn) ¢(Xn)

alre™) ol 4y,

11/13

¢(x,) is Never Explicitly Computed!

N
predict: ¢ = sign (Z a; - K(x4, %) + b>

i=1

. a(old)

update: /("W Y 4y,

n

We only calculate inner products of such vectors.

12 /13

Kernelized Perceptron Learning Algorithm

Data: D = ((x, yn)>7]¥:11 number of epochs E
Result: weights « and bias b
initialize: @« =0 and b = 0;

forec {1,...,E} do

for n € {1,..., N}, in random order do
7 predict
g =sign (X0 i+ K (xi, %) +b);
if § # y, then
update
Qp < O + Yn,
b+ b+ yn;
end
end
end
return o, b

Algorithm 3: KERNELIZEDPERCEPTRONTRAIN
13 /13

