Machine Learning (CSE 446):
Kernel Methods

Sham M Kakade
© 2018

University of Washington
skakade@cs.washington.edu
Can We Have Nonlinearity *and* Convexity?

<table>
<thead>
<tr>
<th></th>
<th>expressiveness</th>
<th>convexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear classifiers</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>Neural networks</td>
<td>😊</td>
<td>😞</td>
</tr>
</tbody>
</table>
Can We Have Nonlinearity *and* Convexity?

<table>
<thead>
<tr>
<th></th>
<th>expressiveness</th>
<th>convexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear classifiers</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Neural networks</td>
<td>😞</td>
<td>😞</td>
</tr>
</tbody>
</table>

Kernel methods: a family of approaches that give us nonlinear decision boundaries without giving up convexity.
Notation

Let $\mathbf{x} = \langle x_1, x_2, \ldots, x_d \rangle$.
Consider two binary features, ϕ_j and $\phi_{j'}$. A new *conjunction* feature can be defined by:

$$
\phi_{j \wedge j'}(x) = \phi_j(x) \wedge \phi_{j'}(x) \quad \text{equivalently} \quad x_{d+1} = x_j \wedge x_{j'}
$$
Consider two binary features, ϕ_j and $\phi_{j'}$. A new \textit{conjunction} feature can be defined by:

$$\phi_{j \land j'}(x) = \phi_j(x) \land \phi_{j'}(x)$$

equivalently

$$x_{d+1} = x_j \land x_{j'}$$

Generalization: take the \textit{product} of two features.
Conjunctive/Product Features

See slides 23–32 in the 10/13 “practical issues” lecture.

Consider two binary features, ϕ_j and $\phi_{j'}$. A new conjunction feature can be defined by:

$$\phi_{j\land j'}(x) = \phi_j(x) \land \phi_{j'}(x) \quad \text{equivalently} \quad x_{d+1} = x_j \land x_{j'}$$

Generalization: take the product of two features.
Bigger generalization: take all the products!

$$\phi(x) = \text{vector}(\langle 1; x \rangle \langle 1; x \rangle^\top)$$

$$= \langle 1, x_1, x_2, \ldots, x_d, x_1^2, x_1 \cdot x_2, \ldots, x_1 \cdot x_d, x_2^2, x_2 \cdot x_1, \ldots, x_2 \cdot x_d, \vdots, \vdots, \vdots, \vdots, \vdots, x_{d-1}^2, x_{d-1} \cdot x_1, x_{d-1} \cdot x_2, \ldots, x_{d-1} \cdot x_d, x_d^2, x_d \cdot x_1, x_d \cdot x_2, \ldots, x_d \cdot x_{d-1} \rangle$$
The Kernel Trick

Some learning algorithms, like the perceptron, can be rewritten so that the only thing you do with feature vectors is take inner products between them.
The Kernel Trick

Some learning algorithms, like the perceptron, can be rewritten so that the only thing you do with feature vectors is take inner products between them.

Note that: \(\phi(x) \cdot \phi(v) \)

\[
\begin{align*}
= & \quad 1 + x_1v_1 + x_2v_2 + \cdots + x_dv_d \\
+ & \quad x_1v_1 + x_1^2v_1^2 + x_1x_2v_1v_2 + \cdots + x_1x_dv_1v_d \\
+ & \quad x_2v_2 + x_2x_1v_2v_1 + x_2^2v_2^2 + \cdots + x_2x_dv_2v_d \\
+ & \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
+ & \quad x_dv_d + x_dx_1v_dv_1 + x_dx_2v_dv_2 + \cdots + x_d^2v_d^2 \\
= & \quad 1 + 2 \cdot \sum_{j=1}^{d} x_jv_j + \sum_{j=1}^{d} \sum_{k=1}^{d} x_jx_kv_jv_k \\
= & \quad 1 + 2 \cdot x \cdot v + (x \cdot v)^2 \\
= & \quad (1 + x \cdot v)^2
\end{align*}
\]
A kernel function (implicitly) computes:

\[K(x, v) = \phi(x) \cdot \phi(v) \]

for some \(\phi \). Typically it is cheap to compute \(K(\cdot, \cdot) \), and we never explicitly represent \(\phi(v) \) for any vector \(v \).
Kernels

A kernel function (implicitly) computes:

\[K(x, v) = \phi(x) \cdot \phi(v) \]

for some \(\phi \). Typically it is cheap to compute \(K(\cdot, \cdot) \), and we never explicitly represent \(\phi(v) \) for any vector \(v \).

Some kernels:

- quadratic \(K^{\text{quad}}(x, v) = (1 + x \cdot v)^2 \)
- cubic \(K^{\text{cubic}}(x, v) = (1 + x \cdot v)^3 \)
- polynomial \(K^p_{\text{poly}}(x, v) = (1 + x \cdot v)^p \)
- radial basis function \(K^{\text{rbf}}_{\gamma}(x, v) = \exp\left(-\gamma \|x - v\|_2^2\right) \)
- hyperbolic tangent \(\tilde{K}^{\text{tanh}}(x, v) = \tanh(1 + x \cdot v) \) (not a kernel)
- all conjunctions \(K^{\text{all conj}}(x, v) = \prod_{j=1}^{d} (1 + x_j v_j) \) (for binary features)
Perceptron Learning Algorithm

Data: $D = \langle (x_n, y_n) \rangle_{n=1}^N$, number of epochs E

Result: weights w and bias b

initialize: $w = 0$ and $b = 0$;

for $e \in \{1, \ldots, E\}$ do

 for $n \in \{1, \ldots, N\}$, in random order do

 # predict
 $\hat{y} = \text{sign}(w \cdot x_n + b);$

 if $\hat{y} \neq y_n$ then

 # update
 $w \leftarrow w + y_n \cdot x_n;$
 $b \leftarrow b + y_n;$

 end

 end

end

return w, b

Algorithm 1: PerceptronTrain
Perceptron Representer Theorem

At every stage of learning, there exist \(\langle \alpha_1, \alpha_2, \ldots, \alpha_N \rangle \) such that

\[
w = \sum_{n=1}^{N} \alpha_n \cdot x_n = \alpha^\top X
\]

In other words, \(w \) is always in the span of the training data.
Perceptron Learning Algorithm (with \(\phi \))

Data: \(D = \langle (x_n, y_n) \rangle_{n=1}^{N} \), number of epochs \(E \)

Result: weights \(w \) and bias \(b \)

initialize: \(w = 0 \) and \(b = 0 \);

for \(e \in \{1, \ldots, E\} \) do

\(n \in \{1, \ldots, N\} \), in random order do

\# predict

\(\hat{y} = \text{sign} (w \cdot \phi(x_n) + b); \)

if \(\hat{y} \neq y_n \) then

\# update

\(w \leftarrow w + y_n \cdot \phi(x_n); \)

\(b \leftarrow b + y_n; \)

end

end

end

return \(w, b \)

Algorithm 2: \textsc{PerceptronTrain with} \(\phi \) (explicit)
\[
\hat{y} = \text{sign}(\mathbf{w} \cdot \phi(x_n) + b)
\]

\[
= \text{sign}\left(\sum_{i=1}^{N} \alpha_i \cdot \phi(x_i) \cdot \phi(x_n) + b\right)
\]

\[
= \text{sign}\left(\sum_{i=1}^{N} \alpha_i \cdot K(x_i, x_n) + b\right)
\]
The Update

\[\mathbf{w}^{(\text{new})} \leftarrow \mathbf{w}^{(\text{old})} + y_n \cdot \phi(x_n) \]

\[\sum_{i=1}^{N} \alpha_i^{(\text{new})} \cdot \phi(x_i) \leftarrow \sum_{i=1}^{N} \alpha_i^{(\text{old})} \cdot \phi(x_i) + y_n \cdot \phi(x_n) \]

\[\sum_{i \neq n} \alpha_i^{(\text{new})} \cdot \phi(x_i) + \alpha_n^{(\text{new})} \cdot \phi(x_n) \leftarrow \sum_{i \neq n} \alpha_i^{(\text{old})} \cdot \phi(x_i) + (\alpha_n^{(\text{old})} + y_n) \cdot \phi(x_n) \]

\[\alpha_n^{(\text{new})} \cdot \phi(x_n) \leftarrow (\alpha_n^{(\text{old})} + y_n) \cdot \phi(x_n) \]

\[\alpha_n^{(\text{new})} \leftarrow \alpha_n^{(\text{old})} + y_n \]
\(\phi(x_n) \) is Never Explicitly Computed!

predict: \[\hat{y} = \text{sign} \left(\sum_{i=1}^{N} \alpha_i \cdot K(x_i, x_n) + b \right) \]

update: \[\alpha_n^{(\text{new})} \leftarrow \alpha_n^{(\text{old})} + y_n \]

We only calculate inner products of such vectors.
Kernelized Perceptron Learning Algorithm

Data: $D = \langle (x_n, y_n) \rangle_{n=1}^{N}$, number of epochs E

Result: weights α and bias b

initialize: $\alpha = 0$ and $b = 0$;

for $e \in \{1, \ldots, E\}$ do

for $n \in \{1, \ldots, N\}$, in random order do

predict

$$\hat{y} = \text{sign} \left(\sum_{i=1}^{N} \alpha_i \cdot K(x_i, x_n) + b \right);$$

if $\hat{y} \neq y_n$ then

update

$$\alpha_n \leftarrow \alpha_n + y_n;$$

$$b \leftarrow b + y_n;$$

end

end

end

return α, b

Algorithm 3: KERNELIZED_PERCEPTRONTRAIN