Decision Tree: Making a Prediction

Data: decision tree \(t \), input example \(x \)
Result: predicted class

if \(t \) has the form \text{LEAF} (y) then
 return \(y \);
else
 \# \(t.\phi \) is the feature associated with \(t \);
 \# \(t.\text{child}(v) \) is the subtree for value \(v \);
 return \(\text{DTreeTest}(t.\text{child}(t.\phi(x)), x) \);
end

Algorithm 1: \text{DTreeTest}
Algorithm 2: DTreeTrain

Data: data D, feature set Φ

Result: decision tree

1. **if** all examples in D have the same label y, or Φ is empty and y is the best guess **then**
 1. return **LEAF**(y);
2. **else**
 1. **for** each feature ϕ in Φ **do**
 1. partition D into D_0 and D_1 based on ϕ-values;
 2. let mistakes(ϕ) = (non-majority answers in D_0) + (non-majority answers in D_1);
 2. let ϕ^* be the feature with the smallest number of mistakes;
 3. return **NODE**(ϕ^*, $\{0 \rightarrow \text{DTreeTrain}(D_0, \Phi \setminus \{\phi^*\}), 1 \rightarrow \text{DTreeTrain}(D_1, \Phi \setminus \{\phi^*\})\}$);

Algorithm 2: DTreeTrain
Danger: Overfitting

- Error rate (lower is better)
- Depth of the decision tree
- Training data
- Unseen data
- Overfitting
Some Notation

- Let ℓ be a loss function; $\ell(y, \hat{y})$ is what we lose by outputting \hat{y} when y is the correct output. For classification:

$$\ell(y, \hat{y}) = [y \neq \hat{y}]$$
Some Notation

- Let ℓ be a loss function; $\ell(y, \hat{y})$ is what we lose by outputting \hat{y} when y is the correct output. For classification:

$$\ell(y, \hat{y}) = [y \neq \hat{y}]$$

- Let $D(x, y)$ define the true probability of input/output pair (x, y), in “nature.” We never “know” this distribution.
Some Notation

- Let ℓ be a loss function; $\ell(y, \hat{y})$ is what we lose by outputting \hat{y} when y is the correct output. For classification:

$$\ell(y, \hat{y}) = \mathbb{I}[y \neq \hat{y}]$$

- Let $D(x, y)$ define the true probability of input/output pair (x, y), in “nature.” We never “know” this distribution.

- The training data $D = \{(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\}$ are assumed to be i.i.d. samples from D.

Some Notation

- Let ℓ be a loss function; $\ell(y, \hat{y})$ is what we lose by outputting \hat{y} when y is the correct output. For classification:

$$\ell(y, \hat{y}) = [y \neq \hat{y}]$$

- Let $D(x, y)$ define the true probability of input/output pair (x, y), in “nature.” We never “know” this distribution.

- The training data $D = \{(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\}$ are assumed to be i.i.d. samples from D.

- The space of classifiers we’re considering is F; f is a classifier from F, chosen by our learning algorithm.
Overfitting, More Formally

- Classifier f’s average loss on **training data**:

$$\hat{\epsilon}(f) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(x_n))$$

- f has overfit D when:

$$\exists f' \in F \text{ s.t. } \hat{\epsilon}(f) < \hat{\epsilon}(f') \land \epsilon(f') < \epsilon(f)$$

This is the fundamental problem of ML.
Overfitting, More Formally

- Classifier f’s average loss on **training data**:

$$\hat{\epsilon}(f) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(x_n))$$

- Classifier f’s **true** expected loss:

$$\epsilon(f) = \sum_{(x, y)} D(x, y) \cdot \ell(y, f(x)) = \mathbb{E}_{(x, y) \sim D}[\ell(y, f(x))]$$
Overfitting, More Formally

- Classifier f’s average loss on training data:

$$\hat{\epsilon}(f) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(x_n))$$

- Classifier f’s true expected loss:

$$\epsilon(f) = \sum_{(x,y)} D(x,y) \cdot \ell(y, f(x)) = \mathbb{E}_{(x,y) \sim D}[\ell(y, f(x))]$$

- f has overfit D when:

$$\exists f' \in \mathcal{F} \text{ s.t. } \hat{\epsilon}(f) < \hat{\epsilon}(f') \land \epsilon(f') < \epsilon(f)$$

This is the fundamental problem of ML.
Inductive, Supervised Machine Learning

- Input: loss function ℓ and training data D drawn i.i.d. from \mathcal{D}
- Output: f such that $\epsilon(f)$ is low over \mathcal{D}, with respect to ℓ

Never forget that $\epsilon(f) \neq \hat{\epsilon}(f)$.

Is your training data D really drawn from \mathcal{D}?
Back to decision trees . . .
Avoiding Overfitting by Stopping Early

- Set a maximum tree depth d_{max}.
Avoiding Overfitting by Stopping Early

- Set a maximum tree depth d_{max}.

- Only consider splits that decrease error by at least some Δ.

Avoiding Overfitting by Stopping Early

- Set a maximum tree depth d_{max}.

- Only consider splits that decrease error by at least some Δ.

- Only consider splitting a node with more than N_{min} examples.
Avoiding Overfitting by Stopping Early

- Set a maximum tree depth d_{max}.

- Only consider splits that decrease error by at least some Δ.

- Only consider splitting a node with more than N_{min} examples.

In each case, we have a hyperparameter $(d_{max}, \Delta, N_{min})$, which you should tune on development data.
Avoiding Overfitting by Pruning

- Build a big tree (i.e., let it overfit), call it t_0.
Avoiding Overfitting by Pruning

▶ Build a big tree (i.e., let it overfit), call it t_0.

▶ For $i \in \{1, \ldots, |t_0|\}$: greedily choose a set of sibling-leaves in t_{i-1} to collapse that increases error the least; collapse to produce t_i.
Avoiding Overfitting by Pruning

- Build a big tree (i.e., let it overfit), call it t_0.

- For $i \in \{1, \ldots, |t_0|\}$: greedily choose a set of sibling-leaves in t_{i-1} to collapse that increases error the least; collapse to produce t_i.

(Alternately, collapse the split whose contingency table is least surprising under chance assumptions.)
Avoiding Overfitting by Pruning

- Build a big tree (i.e., let it overfit), call it t_0.

- For $i \in \{1, \ldots, |t_0|\}$: greedily choose a set of sibling-leaves in t_{i-1} to collapse that increases error the least; collapse to produce t_i.

 (Alternately, collapse the split whose contingency table is least surprising under chance assumptions.)

- Choose the t_i that performs best on development data.
More Things to Know

▶ Instead of using the number of mistakes, we often use information-theoretic quantities to choose the next feature.
More Things to Know

- Instead of using the number of mistakes, we often use information-theoretic quantities to choose the next feature.

- For continuous-valued features, we use thresholds, e.g., \(\phi(x) \leq \tau \).
 In this case, you must choose \(\tau \).
 If the sorted values of \(\phi \) are \(\langle v_1, v_2, \ldots, v_N \rangle \), you only need to consider
 \[
 \tau \in \left\{ \frac{v_n + v_{n+1}}{2} \right\}_{n=1}^{N-1} \quad \text{(midpoints between consecutive feature values)}.
 \]
More Things to Know

- Instead of using the number of mistakes, we often use information-theoretic quantities to choose the next feature.

- For continuous-valued features, we use thresholds, e.g., \(\phi(x) \leq \tau \). In this case, you must choose \(\tau \).

 If the sorted values of \(\phi \) are \(\langle v_1, v_2, \ldots, v_N \rangle \), you only need to consider

 \[
 \tau \in \left\{ \frac{v_n + v_{n+1}}{2} \right\}_{n=1}^{N-1} \quad \text{(midpoints between consecutive feature values)}.
 \]

- For continuous-valued outputs, what value makes sense as the prediction at a leaf? What loss should we use instead of \([y \neq \hat{y}] \)?
Machine Learning (CSE 446):
Limits of Learning

Sham M Kakade

© 2018

University of Washington
skakade@cs.washington.edu
The Bayes Optimal Classifier

\[f^{(BO)}(x) = \arg\max_y D(x, y) \]
The Bayes Optimal Classifier

\[f^{(BO)}(x) = \arg\max_y D(x, y) \]

Theorem: The Bayes optimal classifier achieves minimal zero/one error \((\ell(y, \hat{y}) = [y \neq \hat{y}])\) of any deterministic classifier.
Consider (deterministic) f' that claims to be better than $f^{(BO)}$ and x such that $f^{(BO)}(x) \neq f'(x)$.
Proof

Consider (deterministic) f' that claims to be better than $f^{(BO)}$ and x such that $f^{(BO)}(x) \neq f'(x)$.

Probability that f' makes an error on this input: $\left(\sum_y D(x, y)\right) - D(x, f'(x))$.
Proof

Consider (deterministic) f' that claims to be better than $f^{(BO)}$ and x such that $f^{(BO)}(x) \neq f'(x)$.

Probability that f' makes an error on this input: \(\left(\sum_y D(x, y) \right) - D(x, f'(x)) \).

Probability that $f^{(BO)}$ makes an error on this input: \(\left(\sum_y D(x, y) \right) - D(x, f^{(BO)}(x)) \).
Proof

Consider (deterministic) f' that claims to be better than $f^{(BO)}$ and x such that $f^{(BO)}(x) \neq f'(x)$.

Probability that f' makes an error on this input: $\left(\sum_y \mathcal{D}(x, y) \right) - \mathcal{D}(x, f'(x))$.

Probability that $f^{(BO)}$ makes an error on this input: $\left(\sum_y \mathcal{D}(x, y) \right) - \mathcal{D}(x, f^{(BO)}(x))$.

By definition,

$$\mathcal{D}(x, f^{(BO)}(x)) = \max_y \mathcal{D}(x, y) \geq \mathcal{D}(x, f'(x))$$

$$\Rightarrow \left(\sum_y \mathcal{D}(x, y) \right) - \mathcal{D}(x, f^{(BO)}(x)) \leq \left(\sum_y \mathcal{D}(x, y) \right) - \mathcal{D}(x, f'(x))$$
Proof

Consider (deterministic) f' that claims to be better than $f^{(BO)}$ and x such that $f^{(BO)}(x) \neq f'(x)$.

Probability that f' makes an error on this input: $\left(\sum_y D(x, y) \right) - D(x, f'(x))$.

Probability that $f^{(BO)}$ makes an error on this input: $\left(\sum_y D(x, y) \right) - D(x, f^{(BO)}(x))$.

By definition,

$$ D(x, f^{(BO)}(x)) = \max_y D(x, y) \geq D(x, f'(x)) $$

$$ \Rightarrow \left(\sum_y D(x, y) \right) - D(x, f^{(BO)}(x)) \leq \left(\sum_y D(x, y) \right) - D(x, f'(x)) $$

This must hold for all x. Hence f' is no better than $f^{(BO)}$.

You cannot do better than $\epsilon(f^{BO})$.