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This is my preperation notes for teaching in sections during the winter 2018 quarter for
course CSE 446. Useful for myself to review the concepts as well.

More Linear Algebra
Definition 1.1 (Dot Product). (Algebraic definition) Let a and b be two vectors in Rn.
Then the dot product (or inner product) between a and b is defined as:

a · b = aTb =
n∑

i=1

aibi (1)

(Geometric definition) The dot product of two Euclidean vectors a and b is defined by

a · b = |a||b|cos(θa,b) (2)

Also, The dot product w · x = b is a hyperplane, where w is normal to it.

Definition 1.2 (Projection). Let a and b be two vectors in Rn. The projection of b onto a
is defined

projab =
a · b
|a|

a

|a|
=

a · b
|a|2

a (3)

The projection of a 2-D vector x onto a 1-D line identified by unit vector u is (x · u)u. To
project a N -D vector x down to K-D x̂, we have x̂ =

∑K
i=1(x · ui)ui.

Definition 1.3 (Outer Product). Let a and b be two vectors in Rn. Then the outer product
(or tensor product) between a and b is defined such that (abT )ij = aibj:

abT =


a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn

... ... . . . ...
anb1 anb2 · · · anbn

 (4)

Matrix Multiplication
Let A ∈ Mn×p(R) and B ∈ Mp×m(R), then AB ∈ Mn×m(R). Matrix multiplication AB
can be interpreted in two ways.

1) When we consider row vectors of A and column vectors of B, the multiplication AB
can be viewed as

AB =
[
Ab|1 Ab|2 · · · Ab|m

]
(5)

where B =
[
b|1 b|2 · · · b|m

]
. We know (Ab|k)i = aT

i b|k. Therefore, (AB)ij =
aT
i b|j.
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2) When we consider column vectors of A and row vectors of B, the multiplication AB
can be viewed as

AB =

p∑
i=1

a|ib
T
i (6)

where a|ib
T
i is the outer product with output dimension of n×m.

Definition 1.4 (Orthogonal Matrix). An orthogonal matrix Q is a square matrix with real
entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors), i.e.

QTQ = QQT = I (7)

Therefore, we have QT = Q−1. To fully understand why Equation 7 holds, we need
to know that for two orthogonal vectors u1 and u2, uT

1u2 = 0. And uT
1u1 = |u1|2 = 1.

Therefore, in the resulting matrix, all entries are 0 except for ones along the diagonal.

Probability
Parts of this section reference [1].

Event space We define a space Ω to be the set of all possible outcomes. An event
space S is the set of measurable events α such that α ∈ S and α ⊆ Ω to which we are
willing to assign probabilities. For example, if we roll a dice, then Ω = {1, 2, 3, 4, 5, 6}. A
possible event could be {1} (we rolled one), {1, 3, 5} (we rolled odd), etc. We say an event
α happened if we observed an outcome r ∈ α. The event space S is closed under union
(α ∈ S ∧ β ∈ S → α ∪ β ∈ S) and complementation (α ∈ S → Ω− α ⊆ S).

Probability distribution Given (Ω,S), a probability distribution P : S → R is a
mapping from events to real values, such that (1) for all α ∈ S, P(α) ≥ 0, (2) P(Ω) = 1, and
(3) for β ∈ S, P(α ∪ β) = P(α) + P(β)− P(α ∩ β).

Random variable A random varialbe X : Ω → R associates each outcome in Ω with a
value. We use val(X) to denote the set of possible values that X can take. Random variables
can be discrete or continuous. We primarily consider discrete ones. For simplicity, if x, y are
generic values for random variables X and Y , then we write P(X = x, Y = y) as P(X, Y ).
For a specific value x, we write P(X = x) as P(x).

Marginal distribution The marginal distribution over random variable X is P(X).

Joint distribution The joint distribution over random variables X1, · · ·Xn is P(X1, · · · , Xn)
satisfying P(X1) =

∑
xi,···xn

P(X1, x2, · · · , xn). Note that 1 is arbitrarily chosen.

Conditional probability For random variables X,Y , P(X,Y ) = P(X)P(Y |X), where
P(Y |X) is the probability of Y conditioned on X. For random variables X1, · · · , Xn, we
have P(X1, · · · , Xn) = P(X1)(X2|X1)P(X3|X1, X2) · · ·P(Xn|X1, · · · , Xn−1).
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Independence X and Y are independent if P(X, Y ) = P(X)P(Y ). X and Y are condi-
tionally independent given Z if P(X|Y, Z) = P(X|Z) or P(X, Y |Z) = P (X|Z)P (Y |Z).

Bayes’s Theorem Because P(X,Y ) = P(Y )P(X|Y ) = P(X)P (Y |X), we can write

P(X|Y ) =
P(X)P(Y |X)

P(Y )
(8)

where P(X) is called the prior, and P(X|Y ) is called the posterior.

Expectation For discrete random variable X, the expectation of X under distribution P
is defined as

EP[X] =
∑
x

xP(x) (9)

We can also write it as EX . Note that we can show E[f(X)] =
∑

x f(x)P(x). When
the subscript is not present, E[f(X)] = EX [f(X)], and E[f(X, Y )] = EX,Y [f(X, Y )] =∑

x

∑
y f(x, y)P(x, y), where X, Y means P(X, Y ), the joint probabilty1.

Properties of expectation:

• EP[aX + b] = aEP[X] + b

• EP[X + Y ] = EP[X] +EP[Y ]

• If X and Y are independent, EP[XY ] = EP[X]EP[Y ]

• For a constant value c, E[c] = c.

Conditional expectation We define EP[X|y] =
∑

x xP(x|y) as the conditional expecta-
tion (expectation of X given evidence Y = y).

Variance The variance of variable X is

V arP[X] = EP

[
(X −EP[X])2

]
= EP[X

2]− (EP[X])2 (10)

Properties of variance:

• V ar[aX + b] = a2V ar[X]

• If X and Y are independent, then V arP[X + Y ] = V arP[X] + V arP[Y ]

Covariance matrix Suppose X = [X1, · · · , Xn]. Then we define the covariance matrix Σ
of X as

Σ = E[(X −E[X])(X −E[X])T ] (11)
if µi = E[Xi], then each entry Σij = cov(Xi, Xj) = E[(Xi−µi)(Xj−µj)] = E[XiXj]−µiµj.

1See http://www2.econ.osaka-u.ac.jp/~tanizaki/class/2012/econome1/05.pdf.
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Bayesian Optimal Classifier
Suppose D is some distribution of samples (x, y), where x ∈ Rd and y ∈ val(Y ) and Y is
a discrete random variable. This means D(x, y) outputs the probability of (x, y) to exist in
the world. A classifier f(x) outputs the category (or class) y given input x. The Bayesian
optimal classifier is one defined as

f ∗(x) = arg max
y

D(x, y) (12)

Theorem 3.1. Bayesian optimal classifier achieve minimal error among all classifiers.

Proof. Assume there exists another deterministic classifier f ′ that produces lower error than
f ∗. Then, for some input x, we have f ′(x) ̸= f(x). Suppose in the real world, input x can
map to classes Y = {y1, · · · , yn}. Suppose f ′(x) = yp ∈ Y . We have:

• Probability of x to occur is D(x) =
∑

y∈Y D(x, y).

• Probability of (x, yp) to be observed is D(x, yp) = D(x, f ′(x)).

• Probability of (x, yq) where yq ∈ Y \ {yp} to be observed is D(x)−D(x, f ′(x)). This is
the probability that f ′ made a mistake.

Similarly, the probability that f ∗ made a mistake is D(x) − D(x, f ∗(x)). By definition of
Bayesian optimal classifier,

D(x, f ∗(x)) = max
y
D(x, y) ≥ D(x, f ′(x)) (13)

Therefore,

D(x)−D(x, f ∗(x)) ≤ D(x)−D(x, f ′(x)) (14)

Thus, f ∗ makes fewer mistakes. When f ′ and f ∗ only disagree on x, it is not possible for
f ′(x) being correct while f ∗(x) being wrong. Therefore, f ∗ is optimal.

Perceptron
Perceptron is one of the simplest (linear) binary classifiers. Suppose we observe data points
(xi, yi) for i = 1, · · · , N , where xi ∈ Rd and yi ∈ {−1,+1}. We hope to train the weights
w ∈ Rd and bias b in the following classification function:

ŷ = f(x) = sign(w · x+ b) (15)

To minimize a loss function L(w) = 1
N

∑N
i=1 ℓ(yi, ŷ). The perceptron algorithm is an iterative

process, either offline or online. See Algorithm 1 and 2.
Perceptron is a linear classifier, which means the decision boundary is a linear combina-

tion of features (i.e. a hyperplane). Therefore, if the data is not linearly separable (cannot
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Algorithm 1: Perceptron-Online(T)
1 w(1) ← 0; b(1) ← 0;
2 foreach t = 1, · · · , T do
3 (xt, yt)← new observation at time t;
4 ŷt ← f(w(t) · xt);
5 if ŷt ̸= yt then
6 w(t+1) ← w(t) + ytxt;
7 b(t+1) ← b(t) + yt
8 end
9 end

Algorithm 2: Perceptron-Offline(D, T )
1 w(1) ← 0; b(1) ← 0;
2 foreach t = 1, · · · , T do
3 foreach (xi, yi) ∈ D do
4 ŷ

(t)
i ← f(w(t) · xi);

5 if ŷ
(t)
i ̸= yi then

6 w(t+1) ← w(t) + yixi;
7 b(t+1) ← b(t) + yi
8 end
9 end

10 end

be separated by a hyperplane), then perceptron will not converge. If the data is indeed
linearly separable, then perceptron is guaranteed to converge.

Prove that perceptron is guaranteed to converge.2 Assume the data is linearly separable.
The definition of linear separability tells us that there exists some weights w∗ and the decision
boundary w∗ · x separates the data with a margin γ ≥ 0, i.e.,

yi(w
∗ · x) ≥ γ (16)

Suppose we have weights w(t+1) at time t + 1. We are interested to know if inequality
||w(t+1) − w∗||2 ≤ ||w(t) − w∗||2 holds. That is, w(t+1) is “closer” to w∗, the weights that
can be used to separate the data. Let binary variable mi = 1 if there is a mistake when

2Proof learned from Sham Kakade’s notes: https://courses.cs.washington.edu/courses/cse546/
16au/slides/notes09.pdf. There is another proof [Novikoff] that shows a better upper bound for the
number of mistakes, but it is not necessary for our problem.
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classifying data point i.

||w(t+1) − w∗||2 = ||w(t) +miyixi − w∗||2 (17)
= ||w(t) − w∗||2 + 2miyix

T
i (w

(t) − w∗) +m2
i y

2
i ||xi||2 (18)

≤ ||w(t) − w∗||2 + 2miyix
T
i (w

(t) − w∗) +m2
i (19)

≤ ||w(t) − w∗||2 − 2mi +mi (20)
≤ ||w(t) − w∗||2 −mi (21)

(19) to (20) is because, from (16), we have yix
T
i w

∗ ≥ 0. And because miyix
T
i w

(t) ≤ 0, we
have

miyix
T
i (w

(t) − w∗) ≤ miyix
T
i w

(t) −mi ≤ −mi (22)
Therefore,

mi ≤ ||w(t) − w∗||2 − ||w(t+1) − w∗||2 (23)
Perceptron is indeed improving at every iteration. Suppose the total number of mistakes at
iteration T si MT =

∑T
i=1mi. From the above inequality, we arrive at

MT ≤ ||w(1) − w∗||2 − ||w(T+1) − w∗||2 ≤ ||w∗||2 (24)

The last inequality holds because w(1) = 0. Therefore, there is an upper-bounded for the
total number of mistakes, which means perceptron is guaranteed to converge.
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