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Ridge Regression:
Regulating overfitting when 
using many features
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Training, true, & test error vs. model complexity
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Error vs. amount of data
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Overfitting of 
polynomial regression
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Flexibility of high-order polynomials
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yi = w0 + w1 xi+ w2 xi
2 + … + wp xi

p + εi
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Symptom of overfitting

Often, overfitting associated with very
large estimated parameters ŵ
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Overfitting of linear regression
models more generically
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Overfitting with many features

Not unique to polynomial regression,
but also if lots of inputs (d large)

Or, generically, 
lots of features (D large)

yi =      wj hj(xi) + εi

©2017 Emily Fox

- Square feet

- # bathrooms

- # bedrooms

- Lot size

- Year built

- …
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How does # of observations influence overfitting?

Few observations (N small) 
 rapidly overfit as model complexity increases

Many observations (N very large) 
 harder to overfit

©2017 Emily Fox
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How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):
Data must include representative examples of 
all possible (sq.ft., $) pairs to avoid overfitting
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How does # of inputs influence overfitting?

d inputs (e.g., sq.ft., #bath, #bed, lot size, year,…):

Data must include examples of all possible
(sq.ft., #bath, #bed, lot size, year,…., $) combos
to avoid overfitting
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Adding term to cost-of-fit
to prefer small coefficients
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Desired total cost format

Want to balance:

i. How well function fits data

ii. Magnitude of coefficients

Total cost =

measure of fit + measure of magnitude of coefficients

©2017 Emily Fox

small # = good fit to 
training data

small # = not overfit

want to balancemeasure quality of fit
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Measure of fit to training data
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RSS(w) =      (yi-h(xi)Tw)2
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What summary # is indicative of size of 
regression coefficients?

- Sum?  

- Sum of absolute value?

- Sum of squares (L2 norm)
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Measure of magnitude of regression coefficient
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Consider specific total cost

Total cost =
measure of fit + measure of magnitude of coefficients
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Consider specific total cost

Total cost =
measure of fit + measure of magnitude of coefficients
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RSS(w) ||w||2
2
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Consider resulting objective

What if ŵselected to minimize

If λ=0:

If λ=∞: 

If λ in between: 

RSS(w) + ||w||2
tuning parameter = balance of fit and magnitude

©2017 Emily Fox

λ 2
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Consider resulting objective

What if ŵselected to minimize

RSS(w) + ||w||2
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λ

Ridge regression
(a.k.a L2 regularization)

tuning parameter = balance of fit and magnitude

2
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Bias-variance tradeoff

Large λ:

high bias, low variance

(e.g., ŵ=0 for λ=∞)

Small λ:

low bias, high variance

(e.g., standard least squares (RSS) fit of
high-order polynomial for λ=0)
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In essence, λ
controls model 

complexity 
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Revisit polynomial fit demo

What happens if we refit our high-order
polynomial, but now using ridge regression?

Will consider a few settings of λ …

©2017 Emily Fox
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Coefficient path
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Fitting the ridge regression model
(for given λ value)

©2017 Emily Fox
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Step 1:
Rewrite total cost in matrix notation
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Recall matrix form of RSS

Model for all N observations together

©2017 Emily Fox

= +y H ε
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Recall matrix form of RSS
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RSS(w) =      (yi- h(xi)Tw)2

= (y-Hw)T(y-Hw)
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Rewrite magnitude of coefficients 
in vector notation
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||w||2 = w0
2 + w1

2 + w2
2 + … + wD

2

=  

2
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Putting it all together
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In matrix form, ridge regression cost is:

RSS(w) + λ||w||2

= (y-Hw)T(y-Hw) + λwTw

2
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Step 2:
Compute the gradient
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Why?  By analogy to 1d case…

wTw analogous to w2 and derivative of w2=2w

Gradient of ridge regression cost
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[RSS(w) + λ||w||2] =  [(y-Hw)T(y-Hw) + λwTw] 

[(y-Hw)T(y-Hw)] + λ [wTw]

Δ
Δ Δ

-2HT(y-Hw)

Why?  

Δ

=

2

2w
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Step 3, Approach 1:
Set the gradient = 0
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Ridge closed-form solution
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cost(w) = -2HT(y-Hw) +2λIw= 0

Δ

Solve for w:
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Interpreting ridge closed-form solution
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ŵ= ( HTH + λI)-1 HTy

If λ=0:

If λ=∞: 

CSE 446: Machine Learning34

Recall discussion on
previous closed-form solution
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ŵ= ( HTH )-1 HTy
Invertible if:

In general, 
(# linearly independent obs)

N > D

Complexity of inverse:
O(D3)
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Discussion of
ridge closed-form solution

©2017 Emily Fox

ŵ= ( HTH + λI)-1 HTy
Invertible if:

Always if λ>0, 
even if N < D

Complexity of 
inverse:

O(D3)…
big for large D!
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Step 3, Approach 2:
Gradient descent
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Elementwise ridge regression
gradient descent algorithm
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wj
(t+1) wj

(t) – η *

[-2 hj(xi)(yi-ŷi(w(t)))

+2λwj
(t) ]

Update to jth feature weight:

cost(w) = -2HT(y-Hw) +2λw

Δ
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Recall previous algorithm

©2017 Emily Fox

init w(1)=0 (or randomly, or smartly), t=1

while ||    RSS(w(t))|| > ε
for j=0,…,D

partial[j] =-2    hj(xi)(yi-ŷi(w(t)))

wj
(t+1) wj

(t) – η partial[j]

t  t + 1

Δ
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Summary of ridge regression algorithm
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init w(1)=0 (or randomly, or smartly), t=1

while ||    RSS(w(t))|| > ε
for j=0,…,D

partial[j] =-2    hj(xi)(yi-ŷi(w(t)))

wj
(t+1) (1-2ηλ)wj

(t) – η partial[j]

t  t + 1

Δ
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How to choose λ
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The regression/ML workflow

1. Model selection
Need to choose tuning parameters λ controlling 
model complexity

2. Model assessment
Having selected a model, assess generalization error

©2017 Emily Fox
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Hypothetical implementation

1. Model selection
For each considered λ :
i. Estimate parameters ŵλ on training data
ii. Assess performance of ŵλ on test data
iii. Choose λ* to be λ with lowest test error

2. Model assessment
Compute test error of ŵλ* (fitted model for selected λ*) 
to approx. generalization error

©2017 Emily Fox

Training set Test set

Overly 
optimistic!
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Hypothetical implementation

©2017 Emily Fox

Issue: Just like fitting ŵand assessing its performance 
both on training data 
• λ* was selected to minimize test error (i.e., λ* was fit on test data)

• If test data is not representative of the whole world, then ŵλ* 
will typically perform worse than test error indicates

Training set Test set

CSE 446: Machine Learning44

Training set Test set

Practical implementation

©2017 Emily Fox

Solution: Create two “test” sets!

1. Select λ* such that ŵλ* minimizes error on validation set

2. Approximate generalization error of ŵλ* using test set

Validation 
set

Training set
Test 
set
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Practical implementation

©2017 Emily Fox

Validation 
set

Training set
Test 
set

fitŵλ
test performance 
ofŵλ to select λ*

assess 
generalization 

error of ŵλ*
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Typical splits

©2017 Emily Fox

Validation 
set

Training set
Test 
set

80% 10% 10%

50% 25% 25%
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How to handle the intercept

©2017 Emily Fox
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Recall multiple regression model
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Model:
yi = w0h0(xi) + w1 h1(xi) + … + wD hD(xi)+ εi

=      wj hj(xi) + εi

feature 1 = h0(x)…often 1 (constant)
feature 2 = h1(x)… e.g., x[1]
feature 3 = h2(x)… e.g., x[2]
…
feature D+1 = hD(x)… e.g., x[d]
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If constant feature…

©2017 Emily Fox

yi = w0 + w1 h1(xi) + … + wD hD(xi)+ εi

In matrix notation for N observations:
w01

1
1
1
1
1
1
1
1
1
1
1
1
1
1
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Do we penalize intercept?

Standard ridge regression cost:

Encourages intercept w0 to also be small

Do we want a small intercept?  
Conceptually, not indicative of overfitting…

©2017 Emily Fox

RSS(w) + ||w||2λ 2

strength of penalty
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Option 1: Don’t penalize intercept

Modified ridge regression cost:

How to implement this in practice?
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RSS(w0,wrest) + ||wrest||2λ 2
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Option 1: Don’t penalize intercept
– Closed-form solution –

©2017 Emily Fox

ŵ= ( HTH + λImod)-1 HTy

0
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Option 1: Don’t penalize intercept
– Gradient descent algorithm –

©2017 Emily Fox

while ||    RSS(w(t))|| > ε
for j=0,…,D

partial[j] =-2    hj(xi)(yi-ŷi(w(t)))

if j==0
w0

(t+1)  w0
(t) – η partial[j]

else

wj
(t+1) (1-2ηλ)wj

(t) – η partial[j]

t  t + 1

Δ
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Option 2: Center data first

If data are first centered about 0, then
favoring small intercept not so worrisome

Step 1: Transform y to have 0 mean

Step 2: Run ridge regression as normal
(closed-form or gradient algorithms)

©2017 Emily Fox
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Summary for 
ridge regression
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What you can do now…
• Describe what happens to magnitude of estimated 

coefficients when model is overfit

• Motivate form of ridge regression cost function

• Describe what happens to estimated coefficients of 
ridge regression as tuning parameter λ is varied

• Interpret coefficient path plot

• Estimate ridge regression parameters:
- In closed form

- Using an iterative gradient descent algorithm

• Use a validation set to select the ridge regression 
tuning parameter λ

©2017 Emily Fox


