# Ridge Regression:

Regulating overfitting when using many features

CSE 446: Machine Learning Emily Fox University of Washington January 13, 2017

©2017 Emily Fox







# Flexibility of high-order polynomials

$$y_i = W_0 + W_1 X_i + W_2 X_i^2 + ... + W_p X_i^p + \varepsilon_i$$



# Symptom of overfitting

Often, overfitting associated with very large estimated parameters ŵ

# Overfitting of linear regression models more generically

## Overfitting with many features

Not unique to polynomial regression, but also if lots of inputs (d large)

Or, generically, lots of features (D large)

$$y_i = \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i) + \varepsilon_i$$

- Square feet

- # bathrooms

- # bedrooms

- Lot size

- Year built

- ...

8

©2017 Emily Fo

## How does # of observations influence overfitting?

Few observations (N small)

→ rapidly overfit as model complexity increases

Many observations (N very large)

→ harder to overfit





D17 Emily Fox CSE 446: Machine Learning

### How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):

Data must include representative examples of all possible (sq.ft., \$) pairs to avoid overfitting



## How does # of inputs influence overfitting?

d inputs (e.g., sq.ft., #bath, #bed, lot size, year,...):

Data must include examples of all possible (sq.ft., #bath, #bed, lot size, year,...., \$) combos to avoid overfitting



CSE 446: Machine Learning

Adding term to cost-of-fit to prefer small coefficients

2019 Birlály Girk

### Desired total cost format

#### Want to balance:

- i. How well function fits data
- ii. Magnitude of coefficients





## Measure of magnitude of regression coefficient

What summary # is indicative of size of regression coefficients?

- Sum? Wo= 1,527,301 W,=-1,605,253 Wo+W,= Small #
- D | W; | = | W|, Li norm...

  discuss next lecture

  | D | W; = | | W||\_2 | L2 norm...

  focus of this lecture - Sum of absolute value?
- Sum of squares (L<sub>2</sub> norm)

## Consider specific total cost

Total cost =

measure of fit + measure of magnitude of coefficients

## Consider specific total cost

```
Total cost = \frac{\text{measure of fit}}{\text{RSS(w)}} + \frac{\text{measure of magnitude of coefficients}}{||\mathbf{w}||_2^2}
```

17 ©2017 Emily Fox CSE 446: Machine Lea

## Consider resulting objective

What if w selected to minimize

$$||\mathbf{RSS}(\mathbf{w})| + \lambda ||\mathbf{w}||_2^2$$

$$||\mathbf{v}||_2^2$$

9

## Consider resulting objective

What if w selected to minimize

RSS(w) + 
$$\lambda ||w||_2^2$$
 tuning parameter = balance of fit and magnitude

Ridge regression (a.k.a L<sub>2</sub> regularization)

19 © 2017 Emily Fox CSF 446: Machine Learning

#### Bias-variance tradeoff

#### Large λ:

high bias, low variance (e.g.,  $\hat{\mathbf{w}} = 0$  for  $\lambda = \infty$ )

Small  $\lambda$ :

low bias, high variance

(e.g., standard least squares (RSS) fit of high-order polynomial for  $\lambda=0$ )

20 ©2017 Emily Fox CSE 446: Machine Learnin

In essence,  $\lambda$  controls model complexity

## Revisit polynomial fit demo

What happens if we refit our high-order polynomial, but now using ridge regression?

Will consider a few settings of  $\lambda$  ...

21

2017 Emily Fox



Fitting the ridge regression model (for given λ value)

Step 1:

Rewrite total cost in matrix notation

## Recall matrix form of RSS

Model for all N observations together



## Recall matrix form of RSS

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{y}_{i} - \mathbf{h}(\mathbf{x}_{i})^{\mathsf{T}} \mathbf{w})^{2}$$
$$= (\mathbf{y} - \mathbf{H} \mathbf{w})^{\mathsf{T}} (\mathbf{y} - \mathbf{H} \mathbf{w})$$

13

# Rewrite magnitude of coefficients in vector notation

27 ©2017 Emily Fo

CSE 446: Machine Learning

## Putting it all together

In matrix form, ridge regression cost is:

RSS(w) + 
$$\lambda ||\mathbf{w}||_2^2$$
  
=  $(\mathbf{y} - \mathbf{H} \mathbf{w})^{\mathsf{T}} (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}$ 

28

©2017 Emily Fox

### Step 2:

Compute the gradient

# Gradient of ridge regression cost | | w || 2

$$\nabla \left[ \text{RSS}(\mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2} \right] = \nabla \left[ (\mathbf{y} - \mathbf{H} \mathbf{w})^{\mathsf{T}} (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w} \right]$$

$$= \nabla \left[ (\mathbf{y} - \mathbf{H} \mathbf{w})^{\mathsf{T}} (\mathbf{y} - \mathbf{H} \mathbf{w}) \right] + \lambda \nabla \left[ \mathbf{w}^{\mathsf{T}} \mathbf{w} \right]$$

$$-2\mathbf{H}^{\mathsf{T}} (\mathbf{y} - \mathbf{H} \mathbf{w})$$

$$2\mathbf{w}$$

Why? By analogy to 1d case...

 $\mathbf{w}^{\mathsf{T}}\mathbf{w}$  analogous to  $\mathbf{w}^2$  and derivative of  $\mathbf{w}^2=2\mathbf{w}$ 

30





## Interpreting ridge closed-form solution



$$\hat{\mathbf{w}} = (\mathbf{H}^{\mathsf{T}}\mathbf{H} + \lambda \mathbf{I})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{y}$$

If 
$$\lambda=0$$
:  $\hat{W}^{ridge} = (H^{T}H)^{-1}H^{T}y = \hat{W}^{LS}$  old solu

If 
$$\lambda = \infty$$
: wridge = 0 ← because it's like dividing by too

©2017 Emily

# Recall discussion on previous closed-form solution



Invertible if:

In general, (# linearly independent obs)

N > D

Complexity of inverse:  $O(D^3)$ 

34

2017 Emily Fox





## Elementwise ridge regression gradient descent algorithm

$$\nabla$$
cost(w) = -2H<sup>T</sup>(y-Hw) +2 $\lambda$ w



#### Update to jth feature weight:

$$W_{j}^{(t+1)} \leftarrow W_{j}^{(t)} - \eta *$$
as before 
$$\left[ -2 \sum_{i=1}^{N} h_{j}(\mathbf{x}_{i}) (y_{i} - \hat{y}_{i}(\mathbf{w}^{(t)})) \right]$$
new term

## Recall previous algorithm

init 
$$\mathbf{w}^{(1)} = 0$$
 (or randomly, or smartly),  $t=1$ 

while 
$$||\nabla RSS(\mathbf{w}^{(t)})|| > \varepsilon$$

for 
$$j=0,...,D$$

partial[j] = 
$$-2\sum_{i=1}^{N} h_{j}(\mathbf{x}_{i})(y_{i}-\hat{y}_{i}(\mathbf{w}^{(t)}))$$
  
 $w_{j}^{(t+1)} \leftarrow w_{j}^{(t)} - \eta \text{ partial[j]}$ 

$$w_j^{(t+1)} \leftarrow w_j^{(t)} - \eta \text{ partial[j]}$$

## Summary of ridge regression algorithm

```
init \mathbf{w}^{(1)} = 0 (or randomly, or smartly), t = 1

while ||\nabla RSS(\mathbf{w}^{(t)})|| > \epsilon

for j = 0,...,D

partial[j] = -2\sum_{i=1}^{N} h_{j}(\mathbf{x}_{i})(y_{i} - \hat{y}_{i}(\mathbf{w}^{(t)}))

w_{j}^{(t+1)} \leftarrow (1-2\eta\lambda)w_{j}^{(t)} - \eta partial[j]

t \leftarrow t + 1
```

39 O2017 Emily Fox OSE 444: Machine Learning

How to choose λ

20

## The regression/ML workflow

- Model selection
   Need to choose tuning parameters λ controlling model complexity
- Model assessment Having selected a model, assess generalization error

41 © 2017 Emily Fox CSF 446: Machine Learning

## Hypothetical implementation

Training set

Test set

1. Model selection

For each considered  $\lambda$ :

- i. Estimate parameters  $\hat{\mathbf{w}}_{\lambda}$  on training data
- ii. Assess performance of ŵλ on test data
- iii. Choose  $\lambda^*$  to be  $\lambda$  with lowest test error

Overly optimistic!

2. Model assessment

Compute test error of  $\hat{\mathbf{w}}_{\lambda^*}$  (fitted model for selected  $\lambda^*$ ) to approx. generalization error

42 ©2017 Emily Fox

## Hypothetical implementation

Training set

Test set

Issue: Just like fitting w and assessing its performance both on training data

- $\lambda^*$  was selected to minimize test error (i.e.,  $\lambda^*$  was fit on test data)
- If test data is not representative of the whole world, then  $\hat{\mathbf{w}}_{\lambda^*}$  will typically perform worse than test error indicates

43

©2017 Emily Fox

CSE 446: Machine Learning

## Practical implementation

Training set

Validation set

Test set

Solution: Create two "test" sets!

- 1. Select  $\lambda^*$  such that  $\hat{\mathbf{w}}_{\lambda^*}$  minimizes error on validation set
- 2. Approximate generalization error of  $\hat{\boldsymbol{w}}_{\boldsymbol{\lambda}^*}$  using test set

4

©2017 Emily Fox



| Typical splits |              |                   |             |
|----------------|--------------|-------------------|-------------|
|                | Training set | Validation<br>set | Test<br>set |
|                | 80%          | 10%               | 10%         |
|                | 50%          | 25%               | 25%         |
|                |              |                   |             |
|                |              |                   |             |
| 46             |              | ©2017 Fm          | No. Face    |

## How to handle the intercept



## Recall multiple regression model

Model:

$$\begin{aligned} y_i &= \underset{j=0}{\text{W}_0} h_0(\boldsymbol{x}_i) + \underset{j=1}{\text{W}_1} h_1(\boldsymbol{x}_i) + ... + \underset{j=0}{\text{W}_D} h_D(\boldsymbol{x}_i) + \epsilon_i \\ &= \sum_{j=0}^{D} \underset{j=0}{\text{W}_j} h_j(\boldsymbol{x}_i) + \epsilon_i \end{aligned}$$

feature  $1 = h_0(\mathbf{x})$ ...often 1 (constant)

feature 2 =  $h_1(\mathbf{x})$ ... e.g.,  $\mathbf{x}[1]$ 

feature 3 =  $h_2(\mathbf{x})$ ... e.g.,  $\mathbf{x}[2]$ 

...

feature D+1 =  $h_D(x)$ ... e.g., x[d]

3

#### If constant feature...

$$y_i = w_0 \, + \, w_1 \, h_1(\pmb{x}_i) \, + \, ... \, + \, w_D \, h_D(\pmb{x}_i) + \, \epsilon_i$$

In matrix notation for N observations:



CSE 446: Machine Learning

## Do we penalize intercept?

Standard ridge regression cost:

RSS(w) + 
$$|w|_2^2$$
 strength of penalty

Encourages intercept wo to also be small

Do we want a small intercept? Conceptually, not indicative of overfitting...

50 ©2017 Emily Fox CSE 446: Machine Learning

## Option 1: Don't penalize intercept

Modified ridge regression cost:

$$RSS(w_{0}, \mathbf{w}_{rest}) + \lambda ||\mathbf{w}_{rest}||_{2}^{2}$$

How to implement this in practice?

51 ©2017 Emily Fox CSE 446: Machine Lean

# Option 1: Don't penalize intercept — Closed-form solution —



©2017 Emily Fox CSE 446: Machine Learning

# Option 1: Don't penalize intercept – Gradient descent algorithm –

```
while \|\nabla RSS(\mathbf{w}^{(t)})\| > \varepsilon

for j=0,...,D

partial[j] =-2\sum_{i=1}^{N}h_{j}(\mathbf{x}_{i})(y_{i}-\hat{y}_{i}(\mathbf{w}^{(t)}))

if j==0

w_{0}^{(t+1)} \leftarrow w_{0}^{(t)} - \eta partial[j]

else

w_{j}^{(t+1)} \leftarrow (1-2\eta\lambda)w_{j}^{(t)} - \eta partial[j]

t \leftarrow t+1
```

53

2017 Emily Fox

CSE 446: Machine Learning

## Option 2: Center data first

If data are first centered about 0, then favoring small intercept not so worrisome

Step 1: Transform y to have 0 mean

Step 2: Run ridge regression as normal (closed-form or gradient algorithms)

54

©2017 Emily Fo

Summary for ridge regression

## What you can do now...

- Describe what happens to magnitude of estimated coefficients when model is overfit
- Motivate form of ridge regression cost function
- Describe what happens to estimated coefficients of ridge regression as tuning parameter λ is varied
- Interpret coefficient path plot
- Estimate ridge regression parameters:
  - In closed form
  - Using an iterative gradient descent algorithm
- Use a validation set to select the ridge regression tuning parameter  $\boldsymbol{\lambda}$