1/13/2017

Ridge Regression:

Regulating overfitting when
using many features

CSE 446: Machine Learning
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Training, true, & test error vs. model complexity
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Error vs. amount of data %~ * Cixed model
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Overfitting of

polynomial regression
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Flexibility of high-order polynomials
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Symptom of overfitting

Often, overfitting associated with very
large estimated parameters w
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Overfitting of linear regression

models more generically
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Overfitting with many features

Not unigque to polynomial regression,

but also if lots of inputs (d large)
- Square feet

_ - # bathrooms
Or, generically,

- # bedrooms
lots of Eeatu res (D large) _ Lot size
y. = Z w, hj(Xi) + ¢ - Year built
§=0
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How does # of observations influence overfitting?

Few observations (N small)
-> rapidly overfit as model complexity increases

Many observations (N very large)

- harder to overfit

<

price ($)

square feet (sq.ft.) \'X square feet (sq.ft.) 3(

<

price ($)

©2017 Emily Fo CSE 446: Machine Learning

10

How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):

Data must include representative examples of
all possible (sg.ft., $) pairs to avoid overfitting
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price ($)

square feet (sq.ft.) \'X
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How does # of inputs influence overfitting?

d inputs (e.qg., sq.ft., #bath, #bed, lot size, year,...):

Data must include examples of all possible
(sq.ft., #bath, #bed, lot size, year,...., $) combos
to avoid overfitting
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Adding term to cost-of-fit

to prefer small coefficients
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Desired total cost format

Want to balance:
I. How well function fits data
ii. Magnitude of coefficients

ths aslisR spality of fit
Total cost = (4//% ~~

measure of fit + measure of magnitude of coefficients

small # = good fit to small # = not overfit
training data
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Measure of fit to training data
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Measure of magnitude of regression coefficient

What summary # is indicative of size of
regression coefficients?
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Consider specific total cost

Total cost =
measure of fit + measure of magnitude of coefficients
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Consider specific total cost

Total cost =

measure of fit + measure of magnitude of coefficients

L J \ )
|

!
RSS(w) [wll3
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Consider resulting objective

What if w selected to minimize

RSS(w) + A||w||3
N tuning parameter = balance of fit and magnitude
If A=0: |
(educes o min Rss (W)/ as befo@ C”(A ol
> J\\) Ls (\east 5'4'/"‘/"5)
If A=o0:

N
For sslns whee w 2 , thhen Aptal cost = 0°

\C S:O, xhen ‘otal cock = RSsCo) — U?)::O

If A in between: Ahen O LT £ | Gy
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Consider resulting objective

What if W selected to minimize

RSS(w) + A||w||3

tuning parameter = balance of fit and magnitude

Ridge regression

(a.k.a L, regularization)

19 ©2017 Emily Fo CSE 446: Machine Learning

Bias-variance tradeoff

Large A:
high bias, low variance
(€.g., W =0 for A=e-) In essence, A
controls model
Small A: complexity

low bias, high variance

(e.g., standard least squares (RSS) fit of
high-order polynomial for A=0)

20 ©2017 Emily Fo CSE 446: Machine Learning

10



1/13/2017

21

Revisit polynomial fit demo

What happens if we refit our high-order

polynomial, but now using ridge regression?

Will consider a few settings of A ...
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Coefficient Path
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Fitting the ridge regression model
(for given A value)
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Recall matrix form of RSS

Model for all N observations together

=i
I
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Recall matrix form of RSS

N

RSS(W) =) _ (i hix)Tw)?

=1

= (y-Hw)(y-Hw)
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Rewrite magnitude of coefficients
In vector notation

||W||§ = Wp? + W2 + W, 2 + .+ wWp?

= LT TTTTT e
Wo Wy - - Wp LW,
= w,

= W W
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Putting it all together

In matrix form, ridge regression cost is:
RSS(w) + Al|w]|3
= (y-Hw)"(y-Hw) + AwTw
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Step 2:

Gradient of ridge regression cost |l

V[RSS(w) + Allw| 8] = V[(y-HwW)T(y-Hw) + AwTw]
=V [iy-Hw)ry-Hw)] + AV[ww]

Y
-2HT(y-Hw) 2w

Why? By analogy to 1d case...

wTw analogous to w? and derivative of w?=2w
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Step 3, Approach 1:
Set the gradient=0

Ridge closed-form solution

3D plot of RSS with tangent plane at minimum

lel6

add
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8
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ERSS
! Ycost(w) = —#HT(y—HW) +2Nw=0
o Solve for w:
800 ~ 4}
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Interpreting ridge closed-form solution

3D plot of RSS with tangent plane at minimum

W =(HTH + Al)"tHTy

~A - A
|f )\:O: \l\}an: <HTH> HTy: WLS‘

\/ ,,/‘IJ w6,
. ro . ;’
TASeor Wil o bﬁiyi‘ivm“ﬁ
% by ©2
33 ©2017 Emily Fo CSE 446: Machine Learning
Recall discussion on
previous closed-form solution
w=(H™H)!tHTy
v 4 Cemc D Invertible if:
‘1, I~ A~ In general,
(# linearly independent obs)
N>D
g obs
N Complexity of inverse:
O(D?)
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Discussion of pown HHAT
ridge closed-form solution 5 et 9“5“‘:’”,;'
- “(u)wlu’\z’

W = ( HH + )\I)‘1 HTy
: - Invertible if:

‘1’ \ Always if A>0,

evenifN<D

Complexity of
inverse:
O(D3)...
big for large D!
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Step 3, Approach 2:
Gradient descent
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Elementwise ridge regression
gradient descent algorithm

Vcost(w) = -2HT(y-Hw) +2Aw

Update to jth feature weight:
W, & wlt —n

[_2 Z h (y| y| ))

ds Leﬁvfe

A +2)\Wj ]

new +erm

37 ©2017 Emily FO CSE 446 Machine Learning

Recall previous algorithm

init w)=0 (or randomly, or smartly), t=1
while || VRSS(w®)|| > €

for j=0,...,.D
partlal[l] —‘Zzh (y| y|( ))
w1 & wil) — n partialj]
t<ct+1
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Summary of ridge regression algorithm

init W®=0 (or randomly, or smartly), t=1
while || VRSS(W)|| > €
for j=0,...,.D
partial[f] =-23_hy(x)(-5,(w)
W[ € (1-2n\)w, — n partialj]
t<t+1
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How to choose A
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The regression/ML workflow

1. Model selection
Need to choose tuning parameters A controlling

model complexity

2. Model assessment
Having selected a model, assess generalization error

©2017 Emily FO CSE 446 Machine Learning
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Hypothetical implementation

Training set Test set

1. Model selection
For each considered A :
I.  Estimate parameters W, on training data

li. Assess performance of W, on test data
ii. Choose A" to be A with lowest test error Qve_rly_
optimistic!

2. Model assessment

Compute test error of Ww,. (fitted model for selected \’)
to approx. generalization error

©2017 Emily FO CSE 446 Machine Learning
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Hypothetical implementation

Training set Test set

Issue: Just like fitting w and assessing its performance
both on training data
« A was selected to minimize test error (i.e., A" was fit on test data)

« If test data is not representative of the whole world, then w,.
will typically perform worse than test error indicates

©2017 Emily FO CSE 446 Machine Learning
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Practical implementation

Validation Test
set set

Training set

Solution: Create two “test” sets!

1. Select A" such that W,. minimizes error on validation set
2. Approximate generalization error of w,. using test set

©2017 Emily FO CSE 446 Machine Learning
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Practical implementation

\alidation Test
set set

Training set

* |
fit W,
test performance
of w, to select A’
assess
generalization
error of Ww,.
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Typical splits

Validation Test

Training set

set set
80% 10% 10%
50% 25% 25%
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How to handle the intercept

1/13/2017

48

Recall multiple regression model

Model:
Yi = Woho(X) + wy hy(x;) + ... + wp hp(X)+ g

D
:ZWJ' hj(x;) + €
j=0
feature 1 = hy(x)...often 1 (constant)

feature 2 = h,(x)... e.g., X[1]
feature 3 = h,(x)... e.g., X[2]

feature D+1 = hy(x)... e.g., X[d]
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If constant feature...

Yi = Wo + W hy(x)+ ... + wp hp(X)+ ¢

In matrix notation for N observations:
B HWo
CtHTEwW +
=

m ]

[ A TN
I
,_1|

LLLTTTTT
LITTTTTT
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Do we penalize intercept?

Standard ridge regression cost:

RSS(W) + Al|wl|3

N strength of penalty

Encourages intercept w, to also be small

Do we want a small intercept?
Conceptually, not indicative of overfitting...
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Option 1: Don’t penalize intercept

Modified ridge regression cost:

RSS(Wo Wieg) + MIW,esel 15

How to implement this in practice?
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Option 1: Don’t penalize intercept
— Closed-form solution —

W= (HTH + AImod)y1 HTy
) |

_|_
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Option 1: Don’t penalize intercept
— Gradient descent algorithm —

while || 7RSS(w)[| > €

for j=0,....D N
partial[j] :_Zzhj(xi)(yi_yi(w(t)))
if j==
W €& w ) — n partial[j]
else
w1 & (1-2nA)wY — n partial[j]
t<ct+1
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Option 2: Center data first

If data are first centered about O, then
favoring small intercept not so worrisome

Step 1: Transform y to have O mean

Step 2: Run ridge regression as normal
(closed-form or gradient algorithms)

o4 ©2017 Emily FO

CSE 446 Machine Learning

27



1/13/2017

Summary for

ridge regression

What you can do now...

» Describe what happens to magnitude of estimated
coefficients when model is overfit
* Motivate form of ridge regression cost function
» Describe what happens to estimated coefficients of
ridge regression as tuning parameter A is varied
* Interpret coefficient path plot
» Estimate ridge regression parameters:
- In closed form
- Using an iterative gradient descent algorithm

* Use a validation set to select the ridge regression
tuning parameter A
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