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Classification

GRA, uyl 4ot L
Learn: f: X—> Y & hired /nos kire
- X - features

- Y — target classes

Suppose you know P(Y|X) exactly, how should you classify?
- Baye;c, optimal classifier: Y= y- ] OPA3.8, U4E g 2]
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Recall: Bayes rule SN

[ 7
P(X|Y)P(Y
iy | x) = PEDOP) -

P(X)/\ V\O’MA“%A

Which is shorthand for:

. _ .. PX=jlY=0)PY =)
PY =i|X=j)=
(Vi.j) PY =i|X=]) PX =)
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How hard is it to learn the optimal classifier?

Xy xy ... xleT ¢

° Data — Sunny Warm Normal Strong Warm  Same Yes
Sunny Warm High Strong Warm  Same Yes

Rainy Cold High Strong Warm  Change _
Sunny Warm High Strong Cold Change

* How do we represent these? How many parameters?wm)

— Prior, P(Y) ,‘.((‘“

» Suppose Y is composed of k classes ! \ l P ]

— \ A P(‘(IV)’
k-1 - - . K

- Likelihood, P(X]Y):

* Suppose X is composed of(d pinary features (

< tuwsl Valae
P()(:x“’:y) ¢ bYor each elass (‘(57), 5(‘5+ ove bon =

3
k(z-lvm___ o \ot of F”‘f""ﬂs,/ reed a lot o#a/a\‘a/

, Complex model ! High variance with limited data!!!
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Conditional Independence

X is conditionally independent of Y given Z, if the
probability distribution governing X is independent
of the value of Y, given the value of Z

Vi,j,k) P(X=i|Y=4Z=k=P(X=i|Z=k)
e.q.,

P(Thunder | Rain, Lightening) = P(Thunder | Lightening)

Equivalent to:

P(X,Y | Z)=P(X | Z)P(Y | Z)

What if features are independent?

* Predict Lightening

* From two conditionally independent features
- Thunder
- Rain
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The Naive Bayes assumption

* Nalve Bayes assumption:
- Features are independent given class:
PXLX2]|Y) = P(X[1] | X[2], V) P(X[2] | Y)
= PX[1] [ Y)P(X[2] | V)
- More generally:
PX[1],.... Xld] | Y) = HP(X[J'] |Y)

« How many parameters now?

* Suppose X is composed of d binary features

The Naive Bayes classifier

« Given:
- Prior P(Y)
- d conditionally independent features X|j| given the class Y
- For each X]jl, we have likelihood P(X[jI|Y)

* Decision rule:
§ = fnp(x) = arg mgxp(y)P(X[lh x[d] | y)

= argmgxp(y) HP(XU] | )

 If assumption holds, NB is optimal classifier!

3/2/17



MLE for the parameters of NB

* Given dataset
- Count(A=a,B=b) == # examples where A=a and B=b

* MLE for NB, simply:
- Prior: P(Y=y) =

- Likelihood: P(X[jl=x[jl | Y=y) =

Subtleties of NB classifier 1 —
Violating the NB assumption

* Usually, features are not conditionally independent:

« Actual probabilities P(Y|X) often biased towards 0 or 1

* Nonetheless, NB is one of the most used classifier out there
- NB often performs well, even when assumption is violated
- [Domingos & Pazzani '96] discuss some conditions for good performance

10
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Subtleties of NB classifier 2 —
Insufficient training data

« What if you never see a training instance where X[1]=a when Y=b?
- e.g., Y={SpamEmail}, X[1]={"Viagra'}
- P(X[1]=a | Y=b) =0

¢ Thus, no matter what the values X[2],..., X[d] take:
- P(Y=b | X[1]=a, X[2]..... XId]) = O

* “Solution”: smoothing
- Add “fake” counts, usually uniformly distributed
- Equivalent to Bayesian learning

1 ©2017 Emily Fox

SPORTS

Text classification

| ENTERTAINMENT 7

Classify e-mails —
- Y = {Spam,NotSpam}
Classify news articles
-Y = {what is the topic of the article?} NotSpam
Classify webpages
- Y = {Student, professor, project, ...}

| TECHNOLOGY

Spam

What about the features X?
- The text!

12 ©2017 Emily Fox




Features X are entire document —
X[jl for jth word in article

Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das—news.harvard.e
From: xxxQ@yyy.zzz.edu (John Doe)

Subject: Re: This year’s biggest and worst (opinic
Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most
obvious candidate for pleasant surprise is Alex
Zhitnik. He came highly touted as a defensive
defenseman, but he’s clearly much more than that.
Great skater and hard shot (though wish he were
more accurate). In fact, he pretty much allowed
the Kings to trade away that huge defensive
liability Paul Coffey. Kelly Hrudey is only the
biggest disappointment if you thought he was any
good to begin with. But, at best, he’s only a
mediocre goaltender. A better choice would be
Tomas Sandstrom, though not through any fault of
13 his own, but because somecthugs in Toronto decided

NB for text classification

« P(X]Y) is huge!!!
- Article at least 1000 words, X={X[1],..., X[1000]}

- X[jl represents jth word in document

* i.e., the domain of X[j] is entire vocabulary, e.g., Webster Dictionary
(or more), 10,000 words, etc.

* NB assumption helps a lot!!!

- P(X[jl=xI[jl|Y=y) is the probability of observing word x[j] in a

document on topicy
LengthDoc

fx(x) = argmax P(y) H P(x[j] | y)

14 ©2017 Emily Fox SE 446 Mac
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Bag of words model

« Typical additional assumption: Position in document
doesn’'t matter
P(X[jl=x[jl | Y=y) = P(X[KI=x[jl | Y=y)
- "Bag of words” model — order of words on the page ignored
- Sounds really silly, but often works very well!
LengthDoc

P(y) H P(x[j] | v)

When the lecture is over, remember to wake up the
person sitting next to you in the lecture room.
15 ©2017 Emily F.

Bag of words model

* Typical additional assumption: Position in document
doesn’t matter
P(X[jl=x[j] | Y=y) = P(X[KI=x[j] | Y=y)
- "Bag of words” model — order of words on the page ignored
- Sounds really silly, but often works very well!
LengthDoc

P(y) H P(x[j] | y)

in is lecture lecture next over person remember room

sitting the the the to to up wake when you
16 ©2017 Emily Fox
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Bag-of-words representation

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events
Drausin F. Wulsin®, Emily B. Fox®, Brian Litt*"
“Department of Bioengineering, University of Pennsylvania, Philadelphia, PA

" Department of Neurology, University of Pennsylvania, Philadelphia, PA
“Department of Statistics, University of Washington, Seattle, W:

Abstract
Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We hvlirw ?hv wlatiomhm between
these two classes of events—something n l‘b |o tl uantitatively
could yield important insights mte yr dynamics of
seizures. A goal of our yark is to phise Lhem\ mple epileptic events
ito di (m.m [m llenge posed by the intracranial EEG
(EEG) O 1z gm number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared ﬁ l vari-
able number of channels, (ii) asynchrono Gﬁm QX an
unknown dictionary of \mmql, regimes. We encode a sparse and changing
set of dopondcnclcﬁ{\ lL\\smg & Markov-switching Gaussian
graphical model fon x " l e ﬁ ‘s driving the channel dynams
demonstrate the importance of this model in parsing and out-of-sample pre-
d““me" iEEG data. Ve show that our model produces intuitive state

assign| !a e‘s ra( te clinical analysis of seizures and enable
G Yol busts and full clinical seizures

the col
Keywords: Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time series

and

1. Introduction

Despite over three decades of rescarch, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a discase and a paucity of quantitative tools that are flexible

017 Emily Fox CSE 446: Machine Learning
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Bag-of-words representation

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Wulsin®, Emily B. Fox*, Brian Litt*"

“Department of Bioengineering, University of Pennsyluania, Philadelphia, PA
¥ Department of Neurology, University of Pennsyloania, Philadelphia, PA
“Department of Statistics, University of Washington, Seattle, WA

{modeling, complex, epilepsy,
modeling, Bayesian, clinical,

addition to full- blow clmical seirarcs. We beleve the elationship between e p | le psy S E E G , d a ta , dy NaMmic.. }

these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
scizures. A goal of our work is to parse these complex epileptic events
into distinet dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic tegimes betvieen a vari-
able number of channels, (if) asynchronous regime-switching, and
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state

Abstract

assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical scizures

Keywords: - Bayesian nonparametric, EEC, factorial hidden Markov model,
graphical model, time scries

1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the comple
epilepsy as a disease and a paucity of quantitative tools that arc flexible

©2017 Emily Fox CSE 446
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NB with bag of words for text classification

* Learning phase:
— Prior P(Y)

» Count how many documents you have from each topic (+ prior)
- P(X[IIY)

* For each topic, count how many times you saw word in documents
of this topic (+ prior)

* Test phase:

- For each document

* Use naive Bayes decision rule
LengthDoc

fx(x) = argmax P(y) H P(x[j] | y)

19 o017 e

Twenty News Groups results

Given 1000 training documents from each group
Learn to classify new documents according to
which newsgroup it came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med

talk.politics.misc
talk.politics.guns

Naive Bayes: 89% classification accuracy

20
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Learning curve for Twenty News Groups

20News
100 ———— ey
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00 1000 10000
Accuracy vs. Training set size (1/3 withheld for test)

21

Bayesian Networks—
Representation

CSE 446: Machine Learning
Emily Fox

University of Washington
March 3, 2017
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Learning from structured data

Topic proportions and 2
i 3
Topics Document: assignments A
e e 4
gene 0.04 A% ~ D)
dna 002 p
genetic 0,01
L — Y
G
tite 002
evolve 001
organism  0.01
brain 0,04
nnnnn 002
nerve 001
Lo
data 0.02
nnnnnn 0.02
computer 0,01

Speaker A

Speaker B

Speaker B

23
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TrueSKkill: A Bayesian Skill Rating System
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|ICU Monitoring

True Systolic Fraction )

i M&M«M‘m

ue Pulse onitor Rezeroe
P
o
i i ero Pressure

( Bag Pressure

CSE 446

Machine Learning

Digging in:

Learning with and without context/structure

©2017 Emily Fox

CSE 446: Machine Learning
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Without context: Handwriting recognition

Character recognition,
"2 e.g., kernel SVMs
{ NS - ’ -
N . -
a AN 2

27

Without context: Webpage classification

‘ Company website
WEGS Technology /

135
- syﬁ%[n -2 University website

“ 1 \\\\\\\s
e ‘J Personal website
4 . A~
. | —

RESPONSIVE WEBSITE DESIGN

Large, Medium or Small. Go the Responsive way

28
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With context: Handwriting recognition

plrlalcle

With context: Webpage classification

15



Modeling structured relationships

via Bayesian networks

32

Today — Bayesian networks

* Provided a huge advancement in Al/ML
* Generalizes nalve Bayes and logistic regression

« Compact representation for exponentially-large
probability distributions

* Exploit conditional independencies

©2017 Emily Fox

CSE 446: Machine Learning
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Bayesian network representation

Compact representation of a probability distribution.

Directed Acyclic Graph

Vertices: Random Variables
Edges: Conditional dependencies
“probabilistic relationships”

33

Bayesian network probability factorization

One CPT (conditional probability table)
for each variable

P(variable | parents of variable)

implies the factorization:
| X |
P(X) = H P(X;|parents(X;))

=1

P(A,B,C,D) = P(A) P(B) P(C|A,B) P(D|C)

34
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What a Bayesian network represents (in detail)
and what does it buy you?

©2017 Emily Fox CSE 446: Machine Learning

36

Causal structure

* Suppose we know the following:
- The flu causes sinus inflammation
- Allergies cause sinus inflammation
- Sinus inflammation causes a runny nose
- Sinus inflammation causes headaches

* How are these connected?

3/2/17
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Possible queries

Inference

Most probable explanation

Active data collection

37 ©2017 Emily Fox 46 Machine Learning
CarStarts? Bayesian network
AQ‘mr rBe B B%Qrma « 18 binary attributes
:Q; ) «BQWSW. * Inference
T ' - P(BatteryAge|Starts=f)
Lig tsi 7#3: eryPower ) BQlTank Y g
Rg GQ;auge
Starter . B "LQZ
EnglngCrank:
Fqump - 5’ res e 21 terms, why so fast?
o Poutor /. + Not impressed?
Sopiuge ~ HailFinder BN — more than 354 =
58149737003040059690390169 terms
38 ©2017 Emily Fox CSE 446: Machine Learning
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Factored joint distribution — A preview

What are these probabilities?
Conditional probability tables (CPTs)

Allergy

3/2/17
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Number of parameters

Allergy

©2017 Emily Fox CSE 446: Machine Learning

Factorization speeds
up inference

Exploit distributivity:

P(F=xzp|N =1t) x Z P(F=xzp,A=x4,S=125,H=12xy,N =1)

TALS,TH

= Y P(F=zp)P(A=24)P(S=as|F=2p, A=24)P(H=2y|S=125)P(N=t|S5=ug)

TALS,TH

=P(F=ap)Y P(A=24)) P(S=as|F=a2p,A=22)P(N=t|S=124)> PH=uzy|S=us)

©2017 Emily Fox CSE 446: Machine Learning
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Key: Independence assumptions

©2017 Emily Fox

Knowing sinus separates variables from each other

CSE 446: Machine Learning

Marginal and conditional independence

©2017 Emily Fox

CSE 446: Machine Learnin q
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(Marginal) Independence

* Flu and Allergy are (marginally) independent

Flu=t

Flu = f

Allergy =t

Allergy = f

M

Flu=t

Flu =f

Allergy =t

Allergy = f

46

Conditional independence

* Flu and Headache are not (marginally) ind.

H

* Flu and Headache are independent given Sinus infection

* More generally:

3/2/17
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Conditional independence statements
encoded by Bayesian networks

©2017 Emily Fox CSE 446: Machine Learnin [o]

What is a Bayes net assuming?

Local Markov Assumption: A variable X is independent of
its non-descendents given its parents

ELA|B,C
ELD|B,C
FLB|E

Allows you to read off some simple
conditional independence relationships

48 ©2017 Emily Fox CSE 446: Machine Learning
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Conditional independence in Bayes nets

+ Consider 4 different junction configurations

O—0—E@ WG LW OO0,

= |=
= | <= = | <= = | <=
(a) (b) () (d)
» Conditional versus unconditional independence:
49 ©2017 Emily Fox CSE 446: Machine Learning

Local Markov Assumption:

Explaining away example i suen s pens

50 ©2017 Emily Fox CSE 446: Machine Learning
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Bayes ball algorithm

» Consider 4 different junction configurations

= |=

—_—

= | <= = | <= = | <=
(a) (b) () (@

* Bayes ball algorithm:

51

Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

52

3/2/17
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Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

53

Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

D

54
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Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

é—@/@/@\/@\@

55

Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

V structure.
C not observed. Ball bounces away. G

56
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Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

O—O—g—— O — O~

57

Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

O——2g—O— O~ O~

V structure.
C observed. Ball can pass through G

58
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Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

O—O—g—— O~ O~

Ball gets stuck here

59

Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

O-€-0

60
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Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

O—O—g— D O~ O ~®

O-€-0

V structure.
Descendent of F observed.
Ball can pass through

61

Bayes ball example

A path from A to H is Active if the Bayes ball can get from A to H

)
O—O—@— D O OO

O-€-0

62
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