
3/2/17	

1	

CSE 446: Machine Learning ©2017 Emily Fox 

CSE 446: Machine Learning 
Emily Fox 
University of Washington 
March 3, 2017 

Bayes Optimal Classifier & 
Naïve Bayes 

CSE 446: Machine Learning 2	

Classification 

Learn: f: X ! Y 
- X – features 
- Y – target classes 

Suppose you know P(Y|X) exactly, how should you classify? 
- Bayes optimal classifier: 

©2017 Emily Fox 
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Recall: Bayes rule 
 

Which	is	shorthand	for:	

P (Y | X) =
P (X | Y )P (Y )

P (X)

(8i, j) P (Y = i | X = j) =
P (X = j | Y = i)P (Y = i)

P (X = j)

©2017 Emily Fox 
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How hard is it to learn the optimal classifier? 

•  Data =   

•  How do we represent these? How many parameters? 
-  Prior, P(Y): 

•  Suppose Y is composed of k classes 

-  Likelihood, P(X|Y): 
•  Suppose X is composed of d binary features 

•  Complex model ! High variance with limited data!!! 

Sky Temp Humid Wind Water Forecast EnjoySpt 

Sunny Warm Normal Strong Warm Same Yes 

Sunny Warm High Strong Warm Same Yes 

Rainy Cold High Strong Warm Change No 

Sunny Warm High Strong Cold Change Yes 

©2017 Emily Fox 
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Conditional Independence   

 

 

 

e.g., 

 

 

Equivalent to: 

 

X is conditionally independent of Y given Z, if the 
probability distribution governing X is independent 
of the value of Y, given the value of Z 

(8i, j, k) P (X = i | Y = j, Z = k) = P (X = i | Z = k)

P (X,Y | Z) = P (X | Z)P (Y | Z)

P (Thunder | Rain, Lightening) = P (Thunder | Lightening)

©2017 Emily Fox 
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What if features are independent? 

•  Predict Lightening 

•  From two conditionally independent features 
- Thunder  

- Rain 

©2017 Emily Fox 
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The Naïve Bayes assumption 

•  Naïve Bayes assumption: 
- Features are independent given class: 

- More generally: 

•  How many parameters now? 
•  Suppose X is composed of d binary features 

P (X[1],X[2] | Y ) = P (X[1] | X[2], Y )P (X[2] | Y )

= P (X[1] | Y )P (X[2] | Y )

P (X[1], . . . ,X[d] | Y ) =
Y

j

P (X[j] | Y )

©2017 Emily Fox 
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The Naïve Bayes classifier 

•  Given: 
- Prior P(Y) 
- d conditionally independent features X[j] given the class Y 
- For each X[j], we have likelihood P(X[j]|Y) 

•  Decision rule: 

•  If assumption holds, NB is optimal classifier! 

©2017 Emily Fox 

ŷ = fNB(x) = argmax

y
P (y)P (x[1], . . . ,x[d] | y)

= argmax

y
P (y)

Y

j

P (x[j] | y)
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MLE for the parameters of NB 

•  Given dataset 
-  Count(A=a,B=b) == # examples where A=a and B=b 

•  MLE for NB, simply: 
-  Prior: P(Y=y) =  

-  Likelihood: P(X[j]=x[j] | Y=y) = 

©2017 Emily Fox 
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Subtleties of NB classifier 1 –  
Violating the NB assumption 

•  Usually, features are not conditionally independent: 

•  Actual probabilities P(Y|X) often biased towards 0 or 1 

•  Nonetheless, NB is one of the most used classifier out there 
- NB often performs well, even when assumption is violated 
-  [Domingos & Pazzani ’96] discuss some conditions for good performance 

©2017 Emily Fox 
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Subtleties of NB classifier 2 –  
Insufficient training data 
•  What if you never see a training instance where X[1]=a when Y=b? 
-  e.g., Y={SpamEmail}, X[1]={‘Viagra’} 
-  P(X[1]=a | Y=b) = 0 

•  Thus, no matter what the values X[2],…, X[d] take: 
-  P(Y=b | X[1]=a, X[2],…, X[d]) = 0 

 
•  “Solution”: smoothing 
-  Add “fake” counts, usually uniformly distributed 
-  Equivalent to Bayesian learning 

©2017 Emily Fox 
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Text classification 

•  Classify e-mails 
- Y = {Spam,NotSpam} 

•  Classify news articles 
- Y = {what is the topic of the article?} 

•  Classify webpages 
- Y = {Student, professor, project, …} 

•  What about the features X? 
- The text! 

©2017 Emily Fox 

? 
SPORTS 

WORLD  
NEWS 

ENTERTAINMENT 

SCIENCE TECHNOLOGY 

NotSpam 

Spam 
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Features X are entire document –   
X[j] for jth word in article 

©2017 Emily Fox 
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NB for text classification 
•  P(X|Y) is huge!!! 
- Article at least 1000 words, X={X[1],…, X[1000]} 
- X[j] represents jth word in document  
•  i.e., the domain of X[j] is entire vocabulary, e.g., Webster Dictionary 

(or more), 10,000 words, etc. 

•  NB assumption helps a lot!!! 
- P(X[j]=x[j]|Y=y) is the probability of observing word x[j] in a 

document on topic y 

©2017 Emily Fox 

f
NB

(x) = argmax

y

P (y)
LengthDocY

j=1

P (x[j] | y)
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Bag of words model 

•  Typical additional assumption: Position in document 
doesn’t matter  

P(X[j]=x[j] | Y=y) = P(X[k]=x[j] | Y=y)  
- “Bag of words” model – order of words on the page ignored 

- Sounds really silly, but often works very well! 

When the lecture is over, remember to wake up the  
person sitting next to you in the lecture room. 

©2017 Emily Fox 

P (y)
LengthDocY

j=1

P (x[j] | y)
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Bag of words model 

•  Typical additional assumption: Position in document 
doesn’t matter  

P(X[j]=x[j] | Y=y) = P(X[k]=x[j] | Y=y)  
- “Bag of words” model – order of words on the page ignored 

- Sounds really silly, but often works very well! 

in is lecture lecture next over person remember room  
sitting the the the to to up wake when you 

©2017 Emily Fox 

P (y)
LengthDocY

j=1

P (x[j] | y)
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Bag-of-words representation 
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Modeling the Complex Dynamics and Changing

Correlations of Epileptic Events
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c
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Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.

Keywords: Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible

Preprint submitted to Artificial Intelligence Journal July 29, 2014
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Bag-of-words representation 

©2017 Emily Fox 

{modeling, complex, epilepsy, 
modeling, Bayesian, clinical, 
epilepsy, EEG, data, dynamic…}  
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NB with bag of words for text classification 

•  Learning phase: 
- Prior P(Y) 
•  Count how many documents you have from each topic (+ prior) 

- P(X[j]|Y)  
•  For each topic, count how many times you saw word in documents 

of this topic (+ prior) 

•  Test phase: 
- For each document 
•  Use naïve Bayes decision rule 

©2017 Emily Fox 

f
NB

(x) = argmax

y

P (y)
LengthDocY

j=1

P (x[j] | y)
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Twenty News Groups results 

©2017 Emily Fox 
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Learning curve for Twenty News Groups 

©2017 Emily Fox 
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Bayesian Networks– 
Representation  
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Learning from structured data 

©2017 Emily Fox 

Learning from Structured DataLearning from Structured Data

Learning from Structured Data
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TrueSkill: A Bayesian Skill Rating System 

©2017 Emily Fox 

Skill 

Player 
performance 

Team 
performance 

Observed team 
performance 

difference 

Herbrich et al., 2007 
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(a) (b)

Figure 1: (a) One day’s worth of minute-by-minute monitoring data for an ICU patient. (b) Arterial-
line blood pressure measurement.

artificially low or high values due to zeroing, line flushes, or the drawing of blood samples. These
artifacts not only complicate the state estimation and diagnosis task; they also corrupt recorded data
and cause a large number of false alarms in the ICU, which lead in turn to true alarms being ignored
and alarms being turned off (Tsien & Fackler, 1997). By modeling the artifact-generating processes,
we hope to be able to infer the true underlying blood pressure even when artifacts occur.

To this point, the task described would be an applied Bayesian modeling problem of medium dif-
ficulty. What makes it slightly unusual and perhaps of more general interest is the fact that our
sensor data are recorded as averages over each minute (our analysis is off-line, for the purpose of
making recorded data useable for biomedical research), whereas the events of interest—in this case,
re-zeroings, line flushes, and blood draws—can occur at any time and have durations ranging from
under 5 seconds to over 100 seconds. Thus, the natural time step for modeling the sensor state tran-
sitions might be one second, whereas the measurement interval is much larger. This brings up the
question of how a “slow” (one-minute) model might be constructed and how it relates to a “fast”
(one-second) model. This is an instance of a very important issue studied in the dynamical systems
and chemical kinetics literatures under the heading of separation of time scales (see, e.g., Rao &
Arkin, 2003). Fortunately, in our case the problem has a simple, exact solution: Section 3 shows
that a one-minute model can be derived efficiently, offline, from the more natural one-second model
and gives exactly the same evidence likelihood. The more general problem of handling multiple
time scales within DBNs, noted by Aliferis and Cooper (1996), remains open.

Section 4 describes the complete model for blood pressure estimation, including artifact models, and
Section 5 then evaluates the model on real patient data. We show a number of examples of artifacts,
their detection, and inference of the underlying state values. We analyze model performance over
more than 300 hours of data from 7 patients, containing 228 artifacts. Our results show very high
precision and recall rates for event detection; we are able to eliminate over 90% of false alarms for
blood pressure while missing fewer than 1% of the true alarms.

Our work is not the first to consider the probabilistic analysis of intensive care data. Indeed, one
of the best known early Bayes net applications was the ALARM model for patient monitoring un-
der ventilation (Beinlich et al., 1989)—although this model had no temporal element. The work
most closely related to ours is that of Williams, Quinn, and McIntosh (2005), who apply factorial
switching Kalman filters—a particular class of DBNs—to artifact detection in neonatal ICU data.
Their (one-second) model is roughly analogous to the models described by Russell and Norvig,
using Boolean state variables to represent events that block normal sensor readings. Sieben and

2

Real Alarm Networks:  ICU Monitoring
Alarm network

HRBP
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FIO2

! This model has 37 variables and 504 parameters, created by
hand using knowledge elicitation (probabilistic expert system)

Figure 4: The blood pressure artifact detection DBN. Gray edges connect nodes within a time slice;
black edges are between time slices. “Nodes” without surrounding ovals are deterministic functions
included for clarity.

The Apparent variables are deterministic functions of their parents. For example, we have

ApparentDiaBP =
1
N

⇥
BagTime ·BagPressure+ZeroTime ·ZeroPressure+

(N�BagTime�ZeroTime) ·TrueDiaBP
⇤
.

The physiological state variables in this model are TrueSystolicFraction (the average portion of each
heartbeat spent ejecting blood), TruePulseBP (the peak-to-trough size of the pressure wave gener-
ated by each heartbeat), and TrueMeanBP. For simplicity, basic physiologic factors are modeled
with random walks weighted toward physiologically sensible values.2

The key event variable in the model, corresponding to fN j in Figure 3(b), is EndingValveState.
This has three values for the three possible stopcock positions at the one-minute boundary: open
to patient, open to bag, or open to air. The CPTs for this variable and for its children (at the next
time step) BagTime and ZeroTime are the ones computed by the method of Section 3. The CPT for
EndingValveState has 3⇥3⇥61⇥61=33,489 entries.

5 Experimental Results

To estimate the CPT parameters (P( ft+1 =1| ft =0) and P( ft+1 =1| ft =1)) for the one-second
model, and to evaluate the one-minute model’s performance, we first needed ground truth for event
occurrence and length. By special arrangement we were able to obtain 300 hours of 1Hz data, in
which the artifacts we describe here are obvious to the human eye; one of us (a physician) then
tagged each of those data points for artifact presence and type, giving the ground truth. (There were
a total of 228 events of various lengths in the 300 hours’ data.) With half the annotated data we
verified that event durations were indeed approximately geometrically distributed, and estimated the
one-second CPT parameters; from those, as described in Section 3, we calculated corresponding
one-minute-interval CPTs.

Using averaging equivalent to that used by the regular system, we transformed the other half of
the high-resolution data into 1-minute average blood pressures with associated artifact-time ground
truth. We then used standard particle filtering (Gordon et al., 1993) with 8000 particles to derive
posteriors for true blood pressure and the presence and length of each type of artifact at each minute.
For comparison, we also evaluated three other artifact detectors:

• a support vector machine (SVM) using blood pressures at times t, t�1, t�2, and t�3 as
its features;

• a deterministic model-based detector, based on the linear-combination model of Section 2,
which calculates three estimates of artifact pressure and length, pairwise among the cur-
rent measured systolic, diastolic, and mean pressures, to explain the current measurements

2More accurate modeling of the physiology actually improves the accuracy of artifact detection, but this
point is explored in a separate paper.

6

Beinlich et al., 1989
 Aleks, Russell, et al., 2008
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Digging in:  
Learning with and without context/structure 
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Without context: Handwriting recognition 

Character recognition,  
e.g., kernel SVMs 

z	 c	b	
c	a	

c	 r	r	
r	

r	 r	
r	

©2017 Emily Fox 
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Without context: Webpage classification 

Company website 

Personal website 

University website 

… 
©2017 Emily Fox 
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With context: Handwriting recognition 

©2017 Emily Fox 
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With context: Webpage classification 

©2017 Emily Fox 
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Modeling structured relationships 
via Bayesian networks 

©2017 Emily Fox 
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Today – Bayesian networks 

•  Provided a huge advancement in AI/ML 

•  Generalizes naïve Bayes and logistic regression 

•  Compact representation for exponentially-large 
probability distributions 

•  Exploit conditional independencies 

©2017 Emily Fox 
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Bayesian network representation 

Compact representation of a probability distribution. 

A	 B	

C	

D	

Directed Acyclic Graph 

Vertices: Random Variables 
Edges:     Conditional dependencies  
                “probabilistic relationships” 

©2017 Emily Fox 
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Bayesian network probability factorization 

One CPT (conditional probability table)  
for each variable 

P(variable | parents of variable) 

implies the factorization: 

P(A,B,C,D) = P(A) P(B) P(C|A,B) P(D|C) 

P(C|A,B) 

P(B) P(A) 

P(D|C) 

A	 B	

C	

D	

©2017 Emily Fox 
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What a Bayesian network represents (in detail)  
and what does it buy you? 

©2017 Emily Fox 
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Causal structure 

•  Suppose we know the following: 
- The flu causes sinus inflammation 

- Allergies cause sinus inflammation 

- Sinus inflammation causes a runny nose 

- Sinus inflammation causes headaches 

•  How are these connected? 

©2017 Emily Fox 
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Possible queries 

•  Inference 

•  Most probable explanation 

•  Active data collection 

Flu Allergy 

Sinus 

Head-
ache 

Nose 

©2017 Emily Fox 
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CarStarts? Bayesian network 

•  18 binary attributes 

•  Inference  
-  P(BatteryAge|Starts=f) 

•  216 terms, why so fast? 

•  Not impressed? 
-  HailFinder BN – more than 354 = 

58149737003040059690390169 terms 

©2017 Emily Fox 
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Factored joint distribution – A preview 

Flu Allergy 

Sinus 

Head-
ache 

Nose 

©2017 Emily Fox 
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What are these probabilities? 
Conditional probability tables (CPTs) 

Flu Allergy 

Sinus 

Head-
ache 

Nose 

©2017 Emily Fox 
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Number of parameters 

Flu Allergy 

Sinus 

Head-
ache 

Nose 

©2017 Emily Fox 
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Factorization speeds  
up inference 

Flu Allergy 

Sinus 

Head-
ache 

Nose 

©2017 Emily Fox 

P (F = xF |N = t) /
X

xA,xS ,xH

P (F = xF , A = xA, S = xS , H = xH , N = t)

=
X

xA,xS ,xH

P (F = xF )P (A = xA)P (S = xS | F = xF , A = xA)P (H = xH | S = xS)P (N = t | S = xS)

= P (F = xF )
X

xA

P (A = xA)
X

xS

P (S = xS | F = xF , A = xA)P (N = t | S = xS)
X

xH

P (H = xH | S = xS)

Exploit distributivity: 
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Key: Independence assumptions 

Knowing sinus separates variables from each other 

Flu Allergy 

Sinus 

Head-
ache 

Nose 

©2017 Emily Fox 
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Marginal and conditional independence 
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(Marginal) Independence 

•  Flu and Allergy are (marginally) independent 

Flu = t Flu = f 

Allergy = t 

Allergy = f 

Allergy = t 

Allergy = f 

Flu = t 

Flu = f 

©2017 Emily Fox 
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Conditional independence 

•  Flu and Headache are not (marginally) ind. 

•  Flu and Headache are independent given Sinus infection 

•  More generally: 

©2017 Emily Fox 

F A 
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H N 
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Conditional independence statements  
encoded by Bayesian networks 

©2017 Emily Fox 
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What is a Bayes net assuming? 

Local Markov Assumption: A variable X is independent of 
its non-descendents given its parents 

A	

B	

D	

C	

E	 F	

H	

G	 I	

J	

E	⊥	A	|	B,C	
E	⊥	D	|	B,C	
F	⊥	B	|	E	

Allows you to read off some simple 
conditional independence relationships 

©2017 Emily Fox 
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Conditional independence in Bayes nets 
•  Consider 4 different junction configurations 

 

•  Conditional versus unconditional independence: 

Sec. 2.5. Graphical Models 59

x y zx y z x y z x y z

x y zx y z x y z x y z

(a) (b) (c) (d)

Figure 2.2. Pictorial representation of the Bayes ball algorithm for determining the independence
statements in a directed graphical model. There are four possible three node combinations depicted by
the graphs of (a)-(d). For each of these structures, we examine the case of marginal independence of x
and z (top) or conditional independence of x and z (bottom) given an observation y (gray node). If a
ball starting at one of the x or z nodes can pass to the other, as indicated by the straight arrows, then
those two nodes are not (conditionally/marginally) independent. If the ball bounces back, as indicated
by a set of walls and curved arrows, then the nodes are (conditionally/marginally) independent. These
rules can be linked together in various combinations to examine larger graphical models.

directed graph based on directionality of the edges and whether or not the intermediary
node is an evidence node (i.e., observed). Some of the junction scenarios are bestowed
with a set of walls that deflect the Bayes ball. Two random variables xi and xj associated
with nodes i and j are then deemed conditionally dependent given the random variables
xVk associated with a set of evidence nodes Vk (which may be the empty set) if a
ball starting at one node can traverse the graph to the other node based on the rules
summarized in Fig. 2.2; the random variables are conditionally independent otherwise.
Another method of determining some statements of conditional independence, and ones
extremely useful for the inference algorithms we develop, is described in the following.

Markov Blanket

For a directed graph, a node is conditionally independent of all other nodes in the graph
given its Markov blanket which consists of the node’s parents, children, and coparents.
The coparents of a given node are defined as those nodes that have a child in common
with the given node. The Markov blanket concept is depicted in Fig. 2.3.

Mixture Models and Exchangeability

The version of the de Finetti theorem in Corollary 2.1.1, assuming the distribution Q
has a parameterized density q(· | λ), implies the following hierarchical Bayesian model:

p(y1, . . . , yn, θ | λ) = q(θ | λ)
n
∏

i=1

p(yi | θ), (2.104)

which, based on Eq. (2.101), has a directed graphical representation shown in Fig. 2.4.
This figure contains both an explicit representation of the graphical model, as well as an
equivalent representation using plate notation to compactly represent the n observations

©2017 Emily Fox 
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Explaining away example 

©2017 Emily Fox 

Flu Allergy 

Sinus 

Head-
ache 

Nose 

Local Markov Assumption:  
A variable X is independent of its 
non-descendents given its parents 



3/2/17	

26	

CSE 446: Machine Learning 51	

Bayes ball algorithm 
•  Consider 4 different junction configurations 

 

•  Bayes ball algorithm: 

Sec. 2.5. Graphical Models 59

x y zx y z x y z x y z

x y zx y z x y z x y z

(a) (b) (c) (d)

Figure 2.2. Pictorial representation of the Bayes ball algorithm for determining the independence
statements in a directed graphical model. There are four possible three node combinations depicted by
the graphs of (a)-(d). For each of these structures, we examine the case of marginal independence of x
and z (top) or conditional independence of x and z (bottom) given an observation y (gray node). If a
ball starting at one of the x or z nodes can pass to the other, as indicated by the straight arrows, then
those two nodes are not (conditionally/marginally) independent. If the ball bounces back, as indicated
by a set of walls and curved arrows, then the nodes are (conditionally/marginally) independent. These
rules can be linked together in various combinations to examine larger graphical models.

directed graph based on directionality of the edges and whether or not the intermediary
node is an evidence node (i.e., observed). Some of the junction scenarios are bestowed
with a set of walls that deflect the Bayes ball. Two random variables xi and xj associated
with nodes i and j are then deemed conditionally dependent given the random variables
xVk associated with a set of evidence nodes Vk (which may be the empty set) if a
ball starting at one node can traverse the graph to the other node based on the rules
summarized in Fig. 2.2; the random variables are conditionally independent otherwise.
Another method of determining some statements of conditional independence, and ones
extremely useful for the inference algorithms we develop, is described in the following.

Markov Blanket

For a directed graph, a node is conditionally independent of all other nodes in the graph
given its Markov blanket which consists of the node’s parents, children, and coparents.
The coparents of a given node are defined as those nodes that have a child in common
with the given node. The Markov blanket concept is depicted in Fig. 2.3.

Mixture Models and Exchangeability

The version of the de Finetti theorem in Corollary 2.1.1, assuming the distribution Q
has a parameterized density q(· | λ), implies the following hierarchical Bayesian model:

p(y1, . . . , yn, θ | λ) = q(θ | λ)
n
∏

i=1

p(yi | θ), (2.104)

which, based on Eq. (2.101), has a directed graphical representation shown in Fig. 2.4.
This figure contains both an explicit representation of the graphical model, as well as an
equivalent representation using plate notation to compactly represent the n observations
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