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Classification
PR, uup 4ot
Learn: f: X Y & hiced /7°°
- X — features
- Y — target classes

[,"fLJ

Suppose you know P(Y|X) exactly, how should you classify?

- Bayes optimal classifier: Yz ye 3 GPA=3.8, UqE grade=22]
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Recall: Bayes rule LY
e P

4

PX|Y)P(Y)

PV IX) = =5

A

Which is shorthand for:

(Vi) P(Y =i|X=j)=
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How hard is it to learn the optimal classifier?

X[ %) - X] ¢) Y
e Data= Sunny  Warm  Normal Strong Warm  Same Yes
Sunny Warm High Strong Warm  Same Yes
Rainy Cold High Strong Warm  Change
Sunny Warm High Strong Cold Change RS
* How do we represent these? How many parameters? (
- Prior, P(Y): o) Btex)
» Suppose Y is composed of k classes \ \ ' e ‘
—_— \ Z ®(\zy)
- TETE-

- Likelihood, P(X]Y):
* Suppose X is composed of(d hinary features (
< ,e val
P()(:)l | y“/) . Sor eack closs (‘(;7 )/ dist ovw Cootur wes
?(S':S,T‘W, H:nIW=5)W-" sz:le'VD

4
?\‘((Z-sz__ o \ot of P”‘fAms_/ need a lot of data,
L CompPlétskbdel #HtSrdaffanteWith limited data!!!
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o X LY: indaperdence
Conditional Independence ’ 0= RUx)plr )

X'is conditionally independent of Y given Z, if the
probability distribution governing X is independent
of the value of Y, given the value of Z

(i jik) P(X=i|V£jZ=k)=P(X=i|Z=k
e.g.

| P(Thunder | Rc/n, Lightening) = P(

Thunder | Lightening)
RLT 7T No' /R RLT L [\_J

Equivalent to: p(T,R \L )= P(T\ﬁ/,LW PRIL) = P(TIL)P(RIL)
PX,)Y | Z2)=P(X | 2)P(Y | Z)
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What if features are independent? ¢ x ™7

d
Rocall: PLIT,R) « P(T,RIC)

 Predict Lightening bLy
« From two conditionally independent features ey

- Thunder - senmp?

- Rain 2‘(12_1):€ params

. s
E(Hmate: P(xi\() : P( |,R\L>

Ev‘t TLR‘L

P(T.% L w?@ﬁ g 4 fo»mms,/

2 (2(“) 2 pavams
= 2 ‘:;aro\MS
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The Naive Bayes assumption

* Naive Bayes assumption:
- Features are independent given class:
P(X[1],X[2] | V) = P(X[1] | X[2]. V) P(X[2] [ V)
= PX[] [ Y)P(X[2] [ Y)
- More generally: N f”'”" of m}:\n‘&w(

kl\ﬂb
= w \
 How many parameters now? k earams
+ Suppose X is composed of d binary features (v a\asse_c) btwary X t) J>
No AsSsump? Naive Bo»yes /
w2 k-4 Nice veduction . (m ’Rv-;éff’s% wc)
©2017 Emily FQ CSE 446 Machi

The Naive Bayes classifier

« Given:
- Prior P(Y)
- d conditionally independent features X][j] given the class Y
- For each X]j], we have likelihood P(X[j]|Y)

——

(
O‘Lfo):)w‘" P(\/l){); ou’gr;o»x M)

e Decision rule: PO «— Am&

§ = fvp(x) = argmax P(y)P(x[1],..., x[d] | y)
2 Nawe Ba{/cs
= arg max P(y H P(x s meRon
* If assumption holds, NB is optlmal classifier!
©2017 Emily FQ COE 446 Machine | earning
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MLE for the parameters of NB

e Given dataset
- Count(A=a,B=b) == # examples where A=a and B=b

* MLE for NB, simply:
- Prior: P(Y=y)= Count tTY (¥oy)

e.q. PLY- "hiced’)
CWM\:(¥=)( ,Y:‘/)

- Likelihood: P(X[j]=x[] | Y=y) =

W\ Count (Yzy )
At ) l
Q(f,(ﬁéi{"’\\?\»‘ld ) f()("{) . PD(IY> _ Coum%()(:f /Y: Va )/M
) Count (Y- /N

9 ©2017 Emily Fo CSE 446: Machine Learning

Subtleties of NB classifier 1 —
Violating the NB assumption

« Usually, features are not conditionally independent:

Nwayé
PX[1),.... X[ | ¥) # [[ PX[j]| Y)J

» Actual probabilities P(Y|X) often biased towards O or 1

* Nonetheless, NB is one of the most used classifier out there
- NB often performs well, even when assumption is violated
- [Domingos & Pazzani '96] discuss some conditions for good performance

10 ©2017 Emilv Fo, CSE 446: Machine Learning
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Subtleties of NB classifier 2 —
Insufficient training data

* What if you never see a training instance where X[ﬂ;iwhen Y=b?
- e.g., Y={SpamEmail}, X[1]={'Viagra’} i . one O
- P(X[1]=a| Y=b)=0 pey1x) ¥ PLY) ET“‘?(XCJ)IV) = ol 0

* Thus, no matter what the values X[2],..., X[d] take:

- P(Y=b | X[1]=a, X[2],..., X[d]) = O (Please ) Sic] Paan’

Yree! | lecedint!,
smwth(oun-t(xm'* }{:Y )

« “Solution”: smoothing = Count (KG)<%, Yz y)

- Add “fake” counts, usually uniformly distributed

- Equivalent to Bayesian learning v & Umi# (XT3, 7)
/(\
11 ®) S
LYl =k 5
©2017 Emily Fo CSE 446: Machine Learning

SPORTS

Text classification

ENTERTAINMENT ’)
]

Classify e-mails
- Y = {Spam,NotSpam}
Classify news articles

E- | TECHNOLOGY

- 'Y = {what is the topic of the article?} NotSpam
 Classify webpages
- Y = {Student, professor, project, ...}
,,,,,, .
* What about the features X?
- The text! <\lu‘4 vm\va(y)
2017 Emiy Fo CSE 446: Machine Leaming
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Features X are entire document —
X[j] for jth word in article

Article from rec.sport.hockey %row(’

Path: cantaloupe.srv.cs.cmu.edu!das—news.harvard.e
From: xxx@yyy.zzz.edu (John Doe)

Subject: Re: This year’s biggest and worst (opinic
Date: 5 Apr 09:63:39 GMT

I can only comment on the Kings, but the most
obvious candidate for pleasant surprise is Alex
Zhitnik. He came highly touted as a defensive
defenseman, but he’s clearly much more than that.
Great skater and hard shot (though wish he were
more accurate). In fact, he pretty much allowed
the Kings to trade away that huge defensive
liability Paul Coffey. Kelly Hrudey is only the
biggest disappointment if you thought he was any
good to begin with. But, at best, he’s only a
mediocre goaltender. A better choice would be
Tomas Sandstrom, though not through any fault of

13 his own, but because somecthugs rin Toronto decided CSE 446: Machine | eaming
NB for text classification
100 .
. possible
« P(X]Y) is huge!!! 0% N alues!
- Article at least 1000 words, X={X[1],..., X[1000]}
- X[j] represents jth word in document
* i.e., the domain of X[j] is entire vocabulary, e.g., Webster Dictionary
(or more), 10?000 words, etc.
* NB assumption helps a lot!!!
- POXOI=XIY=y) is the probability of observing word x[j] in a
document on topic y
LengthDoc
fnB(x) = arg max P(y) H P(x[j] | v) P( "hocke” | V= gpuets)
g=1 prov. of woré {:"'é doc
14 ©2017 Emily Fo 3;\[(“ Q S(‘ E 446: Machine L earning
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Bag of words model

* Typical additional assumption: Position in document

) . w,/) ) K g ”)
doesn’t matter p AT Yo pockey

Kool :
PIXOI=x01 | Y=y) = PXIK]=x[] | Y=y)
- “Bag of words” model — order of words on the page ignored
- Sounds really silly, but often works very well!

LengthDoc Naive BAY&‘L .
Ply) [ Pe&llly) e e et
g=1

GO’ s raw it

data 12 Preset .

When the lecture is over, remember to wake up the
person sitting next to you in the lecture room.

15 ©2017 Emily Fo CSE 446: Machine Learning

Bag of words model

 Typical additional assumption: Position in document
doesn’t matter

PIXI=x01 | Y=y) = PXIK]=x[] | Y=y)
- “Bag of words” model — order of words on the page ignored
- Sounds really silly, but often works very well!

LengthDoc

P(y) H P(x[j] | v)

in is lecture lecture next over person remember room
sitting the the the to to up wake when you

16 ©2017 Emily Fo CSE 446: Machine Learning
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Bag-of-words representation

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin T. Wilsin®, Emily B. Tost. Brian Titt=>

“Dcpurtent of Biocnginecring, Uniecrsity of Pennsyboania, Piiludelyhia, P\
“Deperiment o Neuroloay. University of Pernsylvania, Philadc’
“Departiend of Sialislics, University o Washinglon. Se.

Abstract

Patients with epilepsy can manilest short. sub clinical epileptic “bursts” in
audition o fall-Uewn clinical scianes. We belicre n.‘ relationship Lerveecn
these Lo classes of events somch I uanmamcl\
conll yield inportant, insights im ot \,  dynamics of
setzwes. A goal olyour mk is o phise tese mpm cpileptic cveuts
e i cj Hm\gf posed b the intracranial FRG
LG W ~lu u\ Ad .w L\v wunber sud plcesent of clectrodos
i o Dttt W Aol . Faesinn wnpmomenic Ao
swilching process Ut allows for (i) shared i vIl AL e
i e of hamnet 1 sememenof G LRI EX
unksovn dictiouary of dysic sesimep. We cionde n spase aud conging
set of dependenciey ‘ }t@& nsing a Markov switching Ganssisn
eraphical model m oo B s driving e channel dyianics and
demonstrate the importance of this model In parsing and out-of-sample pre-
ic WE: GERC dara. e show thar our model produces inruitive state

A

assigy a‘ et$l aﬁm clinical aualysis of scizures and cuable
the eol glaadteghih bulsts and full clinical sciznes.

Keywords: Bayesian nonparametric, ETG, factorial hidden Markov model,
praphical model. time series

1. Introduction

Despite over three decades of research, we sl bave very liule idea of
what defines & seizure. This ignorance stems both from the complexity of
epilepsy a5 a disease and a pancity of quantitative Tools that e Ldble
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Bag-of-words representation

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin T. Wilsin®, Emily B. Tost. Brian Titt=>

“Depurtneent of Biocginecring, (aiveity of Penasuloasio, Phitadel i, PA
rumenl o Neurolony. University of Pernsulanio, Philadc)

< Criversin 0! Todnaton, Sexie, W {m o d e_"n g’ com pl ex, epl I epsy’
modeling, Bayesian, clinical,

Patients with epilepsy can manifest, short, sub clinical epileptic “bursts™ in I EEG d t d 1
addition to full-blown clinical scizures. We believe the relationship hetween epl e psy, ] a a, ynal I I IC e
these two classcs ol events  something not previously studied quantitatively

conld yield impertant. fnsights fnto the natnre and futrinsic dymnmics of

setawes. A goal of onr work is to parse these complox cpileptic cveuts

o distiner dynamic regimes. A challenge posed T the intracranial ERG

UELEG) data we study is the fact that the munber and placement of eleet rodes

can vy Detween patients. We develop a Bagesian nomparameryie Markow

Neparincnl of 8

swit g process that allows Jor (1) shiazed dynsunic osimes et con s vari-
able mumber of chennels, (i) asynchronous regime-switching, and (iii) an
unknovn dictionary of dywamic rogimes. We cncorde a spacse aud cbangins
set of dependencies between the channels nsing a Markov switching Ganssian
seraphical modcl for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-ol-sample pre-
dicrions of iEFCG dara. W sho that anr madel produces uritive srate

assizgunents hat ca belp automate cliuical aualysis of scizures aud cuable
the conmmparison of sub-clinieal bursts and full clinieal scizures.

Keywords: Bayesian nonparametric, ETG, factorial hidden Markov model,
praphical model. time series

1. Introduction

Despite over three decades of research, we stll bave very liule idea of
what defines & seizure. This ignorance stems both from the complexity of
epilepsy a5 a disease and a pancity of quantitative Tools that e Ldble
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NB with bag of words for text classification

(w_ckg,/ mobel : h'ﬁfﬁms

« Learning phase: Lo Lx wie all , juer mom popnr’)

- Prior P(Y)
* Count how many documents you have from each topic (+ prior)
- F 3
- POXIY) smookhing

* For each topic, count how many times you saw word in documents
of this topic (+ prior)
I

» Test phase:

- For each document

» Use naive Bayes decision rule
LengthDoc

fnp(x) = argmax P(y) H P(x[j]y)

19 ©2017 Emily FO CSE 446 Machine Learning

Twenty News Groups results

Given 1000 training documents from each group
Learn to classify new documents according to
which newsgroup it came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med

talk.politics.misc
talk.politics.guns

Naive Bayes: 89% classification accuracy

20 ©2017 Emily FO CSE 446 Machine Learning
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Learning curve for Twenty News Groups

20News
100 T

90

/\ 8o

70

60
(,(,“(’:jes 50
X d\Q{ 40
30
20
10
o Lii

ffffffffff
4o

Bayes —<—
TFIDF -+~
PRTFIDF ¢~

T TR T T T T T T T

00 1000 .10000
Accuracy vs. Training set size (1/3 withheld for test)

21 ©2017 Emily FQ CSE 446 Machine Learning

Bayesian Networks—
Representation

CSE 446: Machine Learning
Emily Fox

University of Washington
March 3, 2017

11
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Learning from structured data

Topic proportions and o
1 Yy
UL Dooiments assignments
. )
gene 004 S’ =
gonetic 001 Life’s Bare s
- R
(A
life 0.02 -
evolve 0.1 v
organism 001 AT
oo v
-

number 02
mput 0.01
\/
Speaker A Speaker B N Speaker B
23 ©2017 Emily Fo CSE 446: Machine Learning

TrueSkill: A Bayesian Skill Rating System

L o5, Npzi 52, B3) Nps; 53, B3) Npas 50, 82)

I

B - () o (o)

performance < . wﬁ ( |
. Lta=p) . I(t=pa+ ps) . Llts=pa)

I I I

Team °
performance

Nlsi; i, 01 +7%) Nlsi pa, 03+7%) Nlssia, 03+7) Nlss; Ha, 03 +T°) Herbrich et a|_, 2007
[ | n n .
I [ I I rior
s @ @ @ O
C g (e (s
SR S

~ Likelihood

Observed team
performance
difference

. Id,= - t) . Tldo=t-t)
® @

I |
l-... |

(ld;|<€)

24 ©2017 Emily Fo CSE 446: Machine Learning
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ICU Monitoring

Monitor Rezeroed  BagTime

True Systolic Fraction ) True PulseBp )  True MeanBp )
- — /

N\l

14 A
True DiaBp  True Sys Bp (' Bag Pressure ro Pressure ZeroTime - |\,

/ \
/ {, \
/ \
/o \

Apparent Dia Bp Apparent Sys Bp Apparent Mean Bp Ending Valve State )
| $ ‘
|

Beinlich et al., 1989 Mm%mw Aleks, Russell, et al., 2008
»

w
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Digging in:

13
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Without context: Handwriting recognition

A (4

Character recognition,
e.g., kernel SVMs

©2017 Emily FO CSE 446 Machine Learning
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Without context: Webpage classification

Company website
WEGS Technology /
Home AboutUs WebDesigning  WebDevelopment Internet Marketing  Blog ~ Contact Us

Ii§
S]EETED ——> University website

\ Personal website

RESPONSIVE WEBSITE DESIGN

Large, Medium or Small. Go the Responsive way

. [srotpoe | Mtk | Dstip | T ] e ]
. ‘

©2017 Emily FO CSE 446 Machine Learning
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With context: Handwriting recognition

blrlalcle

With context: Webpage classification

15



Modeling structured relationships

via Bayesian networks

3/3/2017

32

Today — Bayesian networks

Provided a huge advancement in Al/ML
Generalizes naive Bayes and logistic regression

Compact representation for exponentially-large
probability distributions

Exploit conditional independencies

©2017 Emily FO

CSE 446: Machine Learning
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Bayesian network representation

Compact representation of a probability distribution.

Directed Acyclic Graph

Vertices: Random Variables
Edges: Conditional dependencies
“probabilistic relationships”

33 ©2017 Emily FO CSE 446 Machine Learning

Bayesian network probability factorization

One CPT (conditional probability table)
P(B) for each variable

P(variable | parents of variable)

P(CIAB)
implies the factorization:

| X |
P(X) = H P(X;|parents(X;))

=1

P(DIC)

P(A,B,C,D) =P(A) P(B) P(C|A,B) P(DIC)

34 ©2017 Emily FO CSE 446 Machine Learning
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and what does it buy you?

What a Bayesian network represents (in detail)

Causal structure

» Suppose we know the following:
- The flu causes sinus inflammation
- Allergies cause sinus inflammation
- Sinus inflammation causes a runny nose
- Sinus inflammation causes headaches

« How are these connected?

36 ©2017 Emily FO

CSE 446: Machine Learning
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Possible queries

. Inference

Allergy

- Most probable explanation

- Active data collection

37 ©2017 Emily Fo CSE 446: Machine Learning
CarStarts? Bayesian network
AQ' . FQ... LQ BQM“ * 18 binary attributes
chatge aQwsm. * Inference
s - P(BatteryAge|Starts=f)
LWQ: EQWPcw:r GQTIHK
Rg GQs‘auge
SQ.r . LQ.’
EngineCranks
R L ¢ 216 terms, why so fast?
RO + Not impressed?
A — - HailFinder BN — more than 3% =
58149737003040059690390169 terms
38 ©2017 Emilv Fo, CSE 446: Machine Learning

19



3/3/2017

Factored joint distribution — A preview

Allergy

©2017 Emily FO

CSE 446: Machine Learning

What are these probabilities?
Conditional probability tables (CPTs)

Allergy

©2017 Emily FO

CSE 446: Machine Learning
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Number of parameters

©2017 Emily Fo CSE 446: Machine Learning

Factorization speeds
up inference

Exploit distributivity:

P(F=zp[N=t)x Y PF=zpA=2485=25H=3zN=t)

LA LS,TH

= Y PF=zp)P(A=2,)P(S=as|F=ap,A=2,)P(H=124|S=25)P(N=1|5=uzs)

TA,TS.TH

=P(F=zr)Y P(A=2)Y P(S=us|F=2p,A=2,)P(N=t|S=25)> PH=2y]|S5=2s)

©2017 Emily Fo CSE 446: Machine Learning
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Key: Independence assumptions

Allergy

Knowing sinus separates variables from each other

©2017 Emily Fo CSE 446: Machine Learning

Marginal and conditional independence

22
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45

(Marginal) Independence

X

e Flu and are (marginally) independent

Flu=t

Flu=f
=t
=f

Flu=t Flu=f

=t
=f

©2017 Emily FO.

CSE 446 Machine Learning

46

Conditional independence

* Flu and Headache are not (marginally) ind.

X

* Flu and Headache are independent given Sinus infection

* More generally:

©2017 Emily FO

CSE 446 Machine Learning

23
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Conditional independence statements
encoded by Bayesian networks

What is a Bayes net assuming?

Local Markov Assumption: A variable X is independent of
its non-descendents given its parents

ELA|BC
ELD|BC
F1B|E

Allows you to read off some simple
conditional independence relationships

48 ©2017 Emily Fo CSE 446: Machine Learning
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Conditional independence in Bayes nets

» Consider 4 different junction configurations

=00 O—0O—B OO0 =00

e

= | | <=
OO OB OO O—@—O®
= | | <= = | | <= = | | <= —
@ (k) (0 (d)
e Conditional versus unconditional independence:
49 ©2017 Emily Fo CSE 446: Machine Learning

Local Markov Assumption:

Explaining away example | e s

50 ©2017 Emily Fo CSE 446: Machine Learning
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Bayes ball algorithm

» Consider 4 different junction configurations

=00 O—0O—B OO0 =00

= |
O—=0—O
= | = | = | —
(CY (b) (© (d)
* Bayes ball algorithm:
ol ©2017 Emily Fox COE 446 Machine | earning

Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

OO D— O O O —~®

OO0

52 ©2017 Emily Fox CSE 446 Machine Learning
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

& OO

53 ©2017 Emily Fox

/@\@

OO0

CSF 446: Machine Learning

Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

=)
O—@—p—C— O~

o4 ©2017 Emily Fox

/@\@

OO0

CSF 446: Machine Learning
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—O——O— O~

55 ©2017 Emily Fox

/@\@

OO0

CSE 446 Machine Learning

Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—O—2D—— O~

V structure.
C not observed. Ball bounces away.

56 ©2017 Emily Fox

/@\@

OO0

CSE 446 Machine Learning
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—C—ig—O— O~

57 ©2017 Emily Fox

/@\@

OO0

CSE 446 Machine Learning

Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—O—2g—O— O —

V structure.
C observed. Ball can pass through

58 ©2017 Emily Fox

/@\@

OO0

CSE 446 Machine Learning
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

O—C—ig—O— O~

Ball gets stuck here

/@\@

OO0

59 ©2017 Emily Fox CSE 446 Machine Learning

Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

ia
&

60 ©2017 Emily Fox CSE 446 Machine Learning
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Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

o
V structure. @

Descendent of F observed.
Ball can pass through

61 ©2017 Emily FO CSE 446 Machine Learning

Bayes ball example

A path from A to H is Active if the Bayes ball can get fromAto H

.@

ia
&

62 ©2017 Emily FO CSE 446 Machine Learning
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