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Classification

Learn: f: X  Y
- X – features
- Y – target classes

Suppose you know P(Y|X) exactly, how should you classify?
- Bayes optimal classifier:
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Recall: Bayes rule

Which is shorthand for:
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How hard is it to learn the optimal classifier?

• Data =  

• How do we represent these? How many parameters?
- Prior, P(Y):

• Suppose Y is composed of k classes

- Likelihood, P(X|Y):
• Suppose X is composed of d binary features

• Complex model ! High variance with limited data!!!

Sky Temp Humid Wind Water Forecast EnjoySpt

Sunny Warm Normal Strong Warm Same Yes

Sunny Warm High Strong Warm Same Yes

Rainy Cold High Strong Warm Change No

Sunny Warm High Strong Cold Change Yes
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Conditional Independence

e.g.,

Equivalent to:

X is conditionally independent of Y given Z, if the 
probability distribution governing X is independent 
of the value of Y, given the value of Z

©2017 Emily Fox

CSE 446: Machine Learning6

What if features are independent?

• Predict Lightening

• From two conditionally independent features
- Thunder

- Rain

©2017 Emily Fox



3/3/2017

4

CSE 446: Machine Learning7

The Naïve Bayes assumption

• Naïve Bayes assumption:
- Features are independent given class:

- More generally:

• How many parameters now?
• Suppose X is composed of d binary features
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The Naïve Bayes classifier

• Given:
- Prior P(Y)
- d conditionally independent features X[j] given the class Y
- For each X[j], we have likelihood P(X[j]|Y)

• Decision rule:

• If assumption holds, NB is optimal classifier!
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MLE for the parameters of NB

• Given dataset
- Count(A=a,B=b) == # examples where A=a and B=b

• MLE for NB, simply:
- Prior: P(Y=y) = 

- Likelihood: P(X[j]=x[j] | Y=y) =
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Subtleties of NB classifier 1 –
Violating the NB assumption

• Usually, features are not conditionally independent:

• Actual probabilities P(Y|X) often biased towards 0 or 1

• Nonetheless, NB is one of the most used classifier out there
- NB often performs well, even when assumption is violated
- [Domingos & Pazzani ’96] discuss some conditions for good performance
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Subtleties of NB classifier 2 –
Insufficient training data
• What if you never see a training instance where X[1]=a when Y=b?

- e.g., Y={SpamEmail}, X[1]={‘Viagra’}
- P(X[1]=a | Y=b) = 0

• Thus, no matter what the values X[2],…, X[d] take:
- P(Y=b | X[1]=a, X[2],…, X[d]) = 0

• “Solution”: smoothing
- Add “fake” counts, usually uniformly distributed
- Equivalent to Bayesian learning
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Text classification

• Classify e-mails
- Y = {Spam,NotSpam}

• Classify news articles
- Y = {what is the topic of the article?}

• Classify webpages
- Y = {Student, professor, project, …}

• What about the features X?
- The text!

©2017 Emily Fox
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Features X are entire document –
X[j] for jth word in article
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NB for text classification
• P(X|Y) is huge!!!

- Article at least 1000 words, X={X[1],…, X[1000]}
- X[j] represents jth word in document 

• i.e., the domain of X[j] is entire vocabulary, e.g., Webster Dictionary 
(or more), 10,000 words, etc.

• NB assumption helps a lot!!!
- P(X[j]=x[j]|Y=y) is the probability of observing word x[j] in a 

document on topic y
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Bag of words model

• Typical additional assumption: Position in document 
doesn’t matter 

P(X[j]=x[j] | Y=y) = P(X[k]=x[j] | Y=y) 
- “Bag of words” model – order of words on the page ignored

- Sounds really silly, but often works very well!

When the lecture is over, remember to wake up the 
person sitting next to you in the lecture room.
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Bag of words model

• Typical additional assumption: Position in document 
doesn’t matter 

P(X[j]=x[j] | Y=y) = P(X[k]=x[j] | Y=y) 
- “Bag of words” model – order of words on the page ignored

- Sounds really silly, but often works very well!

in is lecture lecture next over person remember room 
sitting the the the to to up wake when you
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Bag-of-words representation
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epilepsy
modeling

clinical
complex

Bayesian
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Bag-of-words representation
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{modeling, complex, epilepsy,
modeling, Bayesian, clinical,
epilepsy, EEG, data, dynamic…}
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NB with bag of words for text classification

• Learning phase:
- Prior P(Y)

• Count how many documents you have from each topic (+ prior)

- P(X[j]|Y) 
• For each topic, count how many times you saw word in documents 

of this topic (+ prior)

• Test phase:
- For each document

• Use naïve Bayes decision rule
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Twenty News Groups results
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Learning curve for Twenty News Groups
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Bayesian Networks–
Representation 
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Learning from structured data
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TrueSkill: A Bayesian Skill Rating System
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Skill

Player 
performance

Team 
performance

Observed team 
performance 

difference

Herbrich et al., 2007
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Digging in: 
Learning with and without context/structure
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Without context: Handwriting recognition

Character recognition, 
e.g., kernel SVMs

z cb
ca

c rr
r

r r
r
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Without context: Webpage classification

Company website

Personal website

University website

…
©2017 Emily Fox
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With context: Handwriting recognition
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With context: Webpage classification
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Modeling structured relationships
via Bayesian networks

©2017 Emily Fox
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Today – Bayesian networks

• Provided a huge advancement in AI/ML

• Generalizes naïve Bayes and logistic regression

• Compact representation for exponentially-large 
probability distributions

• Exploit conditional independencies
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Bayesian network representation

Compact representation of a probability distribution.

A B

C

D

Directed Acyclic Graph

Vertices: Random Variables
Edges: Conditional dependencies 

“probabilistic relationships”

©2017 Emily Fox

CSE 446: Machine Learning34

Bayesian network probability factorization

One CPT (conditional probability table) 
for each variable

P(variable | parents of variable)

implies the factorization:

P(A,B,C,D) = P(A) P(B) P(C|A,B) P(D|C)

P(C|A,B)

P(B)P(A)

P(D|C)

A B

C

D
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What a Bayesian network represents (in detail) 
and what does it buy you?

©2017 Emily Fox
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Causal structure

• Suppose we know the following:
- The flu causes sinus inflammation

- Allergies cause sinus inflammation

- Sinus inflammation causes a runny nose

- Sinus inflammation causes headaches

• How are these connected?

©2017 Emily Fox
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Possible queries

• Inference

• Most probable explanation

• Active data collection

Flu Allergy

Sinus

Head-
ache

Nose

©2017 Emily Fox
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CarStarts? Bayesian network

• 18 binary attributes

• Inference 
- P(BatteryAge|Starts=f)

• 216 terms, why so fast?

• Not impressed?
- HailFinder BN – more than 354 = 

58149737003040059690390169 terms

©2017 Emily Fox
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Factored joint distribution – A preview

Flu Allergy

Sinus

Head-
ache

Nose

©2017 Emily Fox
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What are these probabilities?
Conditional probability tables (CPTs)

Flu Allergy

Sinus

Head-
ache

Nose

©2017 Emily Fox
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Number of parameters

Flu Allergy

Sinus

Head-
ache

Nose
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Factorization speeds 
up inference

Flu Allergy

Sinus

Head-
ache

Nose

©2017 Emily Fox

Exploit distributivity:
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Key: Independence assumptions

Knowing sinus separates variables from each other

Flu Allergy

Sinus

Head-
ache

Nose

©2017 Emily Fox
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Marginal and conditional independence
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(Marginal) Independence

• Flu and Allergy are (marginally) independent

Flu = t Flu = f

Allergy = t

Allergy = f

Allergy = t

Allergy = f

Flu = t

Flu = f

©2017 Emily Fox
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Conditional independence

• Flu and Headache are not (marginally) ind.

• Flu and Headache are independent given Sinus infection

• More generally:

©2017 Emily Fox

F A

S

H N
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Conditional independence statements 
encoded by Bayesian networks
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What is a Bayes net assuming?

Local Markov Assumption: A variable X is independent of 
its non-descendents given its parents

A

B

D

C

E F

H

G I

J

E  A | B,C
E  D | B,C
F  B | E

Allows you to read off some simple
conditional independence relationships

©2017 Emily Fox



3/3/2017

25

CSE 446: Machine Learning49

Conditional independence in Bayes nets
• Consider 4 different junction configurations

• Conditional versus unconditional independence:

x y zx y z x y z x y z

x y zx y z x y z x y z

(a) (b) (c) (d)

©2017 Emily Fox
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Explaining away example

©2017 Emily Fox

Flu Allergy

Sinus

Head-
ache

Nose

Local Markov Assumption:
A variable X is independent of its 
non-descendents given its parents
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Bayes ball algorithm
• Consider 4 different junction configurations

• Bayes ball algorithm:

x y zx y z x y z x y z

x y zx y z x y z x y z

(a) (b) (c) (d)

©2017 Emily Fox
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H

©2017 Emily Fox
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’
V structure. 
C not observed. Ball bounces away.

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’
V structure. 
C observed. Ball can pass through

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

Ball gets stuck here

A path from A to H is Active if the Bayes ball can get from A to H

©2017 Emily Fox
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

V structure. 
Descendent of F observed. 
Ball can pass through

A path from A to H is Active if the Bayes ball can get from A to H
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Bayes ball example

A HC
E G

DB F

F’’

F’

A path from A to H is Active if the Bayes ball can get from A to H
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