Bayes Optimal Classifier & Naïve Bayes

CSE 446: Machine Learning Emily Fox University of Washington March 3, 2017

Bayesian Networks– Representation

CSE 446: Machine Learning Emily Fox University of Washington March 3, 2017

Today – Bayesian networks

- Provided a huge advancement in AI/ML
- Generalizes naïve Bayes and logistic regression
- Compact representation for exponentially-large probability distributions
- Exploit conditional independencies

32

CSE 446: Machine Learning

Causal structure

- Suppose we know the following:
 - The flu causes sinus inflammation
 - Allergies cause sinus inflammation
 - Sinus inflammation causes a runny nose
 - Sinus inflammation causes headaches
- How are these connected?

CSE 446: Machine Learning

