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Why might you want to perform

feature selection?
Efficiency:

- If size(w) = 100B, each prediction is expensive
- If Wwisparse], computation only depends on # of non-zeros

~ many zeros

O=LLIITI T

% :Z W, hy(x;)

w yi 75 0

Interpretability:

- Which features are relevant for prediction?
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Sparsity: Housing application

Lot size
Single Family
Year built
Last sold price

Finished sqgft
Unfinished sgft

# floors
Flooring types
Parking type
Parking amount
Cooling
Heating

Exterior materials

Roof type
Structure style
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Last sale price/sqft

Finished basement sqft

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System
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Option 1: All subsets or greedy variants

Exhaustive approach: “all subsets”

Consider all possible models, each using a subset of features
How many models were evaluated?each indexed by features included

0
Mﬂb’ﬂ/‘ m’“"bv
Geher - &
- 28 = 256
Yi= & [000..000] 230 = 1,073,741,824
yi = Woho(X) + & [100..000] 21000 = 1,071509 x 10301
h 21008 = HUGE!!!!
L= Y+ &
y.: w; hy(x) + & [0:10...0001 ! ZDH
Vi = Wohg(X;) + wy hy(x) + g [110..000] .
i - o'lo\Ai 1A i - Typ|Ca”y,
Yi = Woho(x) + Wy hy(x) + .+ Wohof+ e [111 . 111] computationally
infeasible

27.-- 7z -
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Choosing model complexity?

Option 1: Assess on validation set
Option 2: Cross validation

Option 3+: Other metrics for penalizing model complexity
like BIC...
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Greedy algorithms

Forward stepwise:
Starting from simple model and iteratively add features most useful to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

In forward algorithm, insert steps to remove features no longer as
important

Lots of other variants, too.
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Option 2: Regularize

Ridge regression: L, regularized regression

Total cost =
measure of fit + A measure of magnitude of coefficients
| J |
1 1 ‘
RSS(W) =W+ .+ wo?
Encourages small weights
but not exactly O
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Coefficient path — ridge
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Using regularization for feature selection

Instead of searching over a discrete set of solutions, can
we use regularization?
- Start with full model (all possible features)

- “Shrink” some coefficients exactly to O
* i.e., knock out certain features

- Non-zero coefficients indicate “selected” features

12 ©2017 Emily Fo CSE 446: Machine Learning
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Thresholding ridge coefficients?

Why don’t we just set small ridge coefficients to 0?

) ) CHRS 1) O N
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13 ©2017 Emily FO CSE 446 Machine Learning

Thresholding ridge coefficients?

Selected features for a given threshold value
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Thresholding ridge coefficients?

Let's look at two related features...

Nothing measuring bathrooms was included!
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Thresholding ridge coefficients?
If only one of the features had been included...
0 ‘ | | [ |
| I
© 2 O & (N ’@O C e O(\K
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&m@io@\ et ;‘ei;%’&ez <& ° o
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Thresholding ridge coefficients?

Would have included bathrooms in selected model

& G X 0 e e NS
'\ e N & \OO 0 oS W 60\ ’b&\ ,\‘o
o 0 N R\ K N Q &
RO o ® O & X 28
% \xe"} @2 9

Can regularization lead directly to sparsity?

17 ©2017 Emily Fo CSE 446: Machine Learning

Try this cost instead of ridge...

Total cost =
measure of fit + A measure of magnitude of coefficients
\ ) \ )
I I
RSS(w) W]l =Iwol+...+|wp|

\
Leads to sparse solutions!

Lasso regression

(a.k.a. L, regularized regression)
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Lasso regression: L, regularized regression

Just like ridge regression, solution is governed by a
continuous parameter A

RSS(w) + Allwlly
N tuning parameter = balance of fit and sparsity
FASO: %2 15 (nren, solm)

If A=oo: JJ\‘M“ = D
If Ain between: ¢ - ||t:>"“’°l|, < I\Q)“U,

©2017 Emily Fo CSE 446: Machine Learning

20

Coefficient path — ridge

bedrooms
bathrooms
sqft_living
sqft_lot
floors
yr_built
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Coefficient ﬁ)ath — lasso
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Fitting the lasso regression model

(for given A value)

11
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How we optimized past objectives

To solve for w, previously took gradient of total cost
objective and either:

1) Derived closed-form solution

2) Used in gradient descent algorithm

23 ©2017 Emily Fo CSE 446: Machine Learning

Optimizing the lasso objective \
Z W)

e =5
Lasso total cost: RSS(w) + A ||w||, :

Issues:
1) What's the derivative of |w;|?

(w3
T Lt g —\: \ ZL, derivatwe = +(
“J.
N derwaty, * . .
Abwzt‘(:?;\eé gradients - subgradients

2) Even if we could compute derivative, no closed-form solution

can use subgradient descent

24 ©2017 Emily Fo CSE 446: Machine Learning
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Aside 1: Coordinate descent

Coordinate descent

p (W
Goal: Minimize some function g My 9 )

(5(\41): 6(W°’w‘ S vu],> \,)\nv';,;f::ﬁw&%&»

Often, hard to find minimum for all coordinates, but easy for each coordinate

Coordinate descent:

Initialize W = O (or smartly...) el Cmr_v:
while not converged VP rod-

pick a coordinate j lﬂ\x
A

. . AXis -
W, € min Wy . Wiy W @) LWy ) -l - ligne
J %) %( 0,78 "/‘\/ wJ-H: -, 'D> as_‘ :Ps

:)vs’(_ M~ Ve

g coor
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Comments on coordinate descent

How do we pick next coordinate?
At random (“random” or “stochastic” coordinate descent), round robin, ...

No stepsize to choose!

Super useful approach for many problems

- Converges to optimum in some cases
(e.g., “strongly convex”)

- Converges for lasso objective

©2017 Emily FO CSE 446 Machine Learning

14



1/18/2017

Normalizing features

Scale training columns (not rows!) as:

h.(xk) Normalizer:
hj(xk) = J e Zj
N
Zhj(xi)z
i=1
Apply same training scale factors to test data:
h-(Xk) Normalizer:
h(x) = J Z
7 : o
lyt ()2
teiFt)Fp))Zin? ;hl(x') \ summing over training points
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Aside 3: Coordinate descent for
unregularized regression

15
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Optimizing least squares objective
one coordinate at a time

N
D
RSS(w) = Z (yi- ZO wjhj(xi))2 JP 220
i J= X n "
i=1 e A
Fix all coordinates w_jand take partial w.r.t. v e (w?f

~N '\/~6~u Wi for k4]

-zzh )i —>why(x))
22 h; ly; ~Zwk\,\l{ ~ Wik >

¥
22 b, (v« %M\AQ > 2wy \Zbﬁ
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GT RSS(w
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Optimizing least squares objective
one coordinate at a time

N
D

RSS(w) = _(y- > wh(x))?

X —0
=1 J

Set partial = O and solve

0

ow,
Wiz £
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Coordinate descent for
least squares regression

Initialize w = O (or smartly...)
while not converged
for j:O 1 D residual

N without feature |
compute: p; = 2_h(x)(y; — J{(W.))

set: Wj = P prediction without feature

33 ©2017 Emily FO
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Coordinate descent for lasso

17
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Coordinate descent for
least squares regression

Initialize w = O (or smartly...)
while not converged
fOf J:0 1 D residual

without feature

T VR
compute: p; =2 _h(x)(y; — J{(W.))

set: Wj = pj prediction without feature |
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Coordinate descent for lasso

Initialize w = O (or smartly...)
while not converged
for j=0,1,...,.D

N
compute: p; = 2_h(x)(y; — J{(W.))
pj+ M2 ifp < -M2

set: W, =< 0 if p, in [-A/2, \/2]
p—M2  ifp> M2

36 ©2017 Emily FO
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Soft thresholding
o+ M2 ifp<-M2
W,=< 0 if p;in [-A/2, M/2]
p—M2  ifp;> M2
W

74
A

37 ©2017 Emily FO
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How to assess convergence?

Initialize w = O (or smartly...)
while not converged
for j=0,1,...,.D

N
compute: p;= > _h(x)(y; — (W)

set: W,=< 0 if p;in [-A/2, M/2]
o — M2  ifp > M2
38 ©2017 Emily FQ CSE 446: Machine | earning
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Convergence criteria

When to stop?

For convex problems, will start to take
smaller and smaller steps

Measure size of steps taken in a
full loop over all features

- stop when max step <e¢

39 ©2017 Emily Fo CSE 446: Machine Learning

Other lasso solvers

Classically: Least angle regression (LARS) [Efron et al. ‘04]
Then: Coordinate descent algorithm [Fu ‘98, Friedman, Hastie, & Tibshirani’08]

Now:
e Parallel CD (e.g., Shotgun, [Bradley et al. ‘11])

* Other parallel learning approaches for linear models
- Parallel stochastic gradient descent (SGD) (e.g., Hogwild! [Niu et al. '11])
- Parallel independent solutions then averaging [Zhang et al. ‘12]

» Alternating directions method of multipliers (ADMM) [Boyd et al. '11]

40 ©2017 Emily Fo CSE 446: Machine Learning
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Coordinate descent for lasso

Coordinate descent for lasso
with normalized features

Initialize w = O (or smartly...)
while not converged
for j=0,1,...,.D

N
compute: p;= 2 h(x)(y; — (W)

p;+ M2 if p, < -\/2
set: W,=< 0 if p; in [-A/2, M/2]
pj— M2 if p; > \/2

42 ©2017 Emily Fo CSE 446: Machine Learning
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Coordinate descent for lasso
with unnormalized features

Precompute: Z _Zh (%p)?

Initialize w = O (or smartly )
while not converged
for j=0,1,...,.D

N
compute: p; = ;hj(xi)(Yi — Vi(W )

set: W, =< 0 if pj in [-\/2, 2]
(0j—M2)Iz;  ifp;> M2

©2017 Emily FO
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How to choose A

22
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If sufficient amount of data...

\alidation Test

Training set set set

* |
fit W,
test performance
of w, to select A’
assess
generalization
error of w,.

45 ©2017 Emily FO
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Summary for feature selection

and lasso regression

23
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Impact of feature selection and lasso

Lasso has changed machine learning,
statistics, & electrical engineering

But, for feature selection in general, be careful about
interpreting selected features

- selection only considers features included

- sensitive to correlations between features

- result depends on algorithm used

- there are theoretical guarantees for lasso under certain conditions

©2017 Emily Fo CSE 446: Machine Learning
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What you can do now...

» Describe “all subsets” and greedy variants for feature selection
* Analyze computational costs of these algorithms
* Formulate lasso objective

» Describe what happens to estimated lasso coefficients as tuning
parameter A is varied

* Interpret lasso coefficient path plot
» Contrast ridge and lasso regression

» Estimate lasso regression parameters using an iterative coordinate
descent algorithm

©2017 Emily Fo CSE 446: Machine Learning
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Deriving the lasso coordinate

descent update
Z

1/18/2017
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Optimizing lasso objective
one coordinate at a time

N D

RSS(w) + Allw]l; = > (y- f%wjhj(xi))z +A ) Jw,

i=1 J= =0

Fix all coordinates w_jand take partial w.r.t. v,

derive without normalizing features

©2017 Emily FOx

CSF 446 Machine | eaming |
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Part 1: Partial of RSS term

RSS(w) + Allw]|, = Z(yi‘ > wih(x))? A lejl

9 Rssw _-2Zh )y, — wh( X))

ow,
- -1Zh'ty-)(Y Zwk\r\ (xs) - wh(x\)
AL zwk\« 6d) + 2 2 S
. = Utz o T

Part 2: Partial of L, penalty term

N D
RSS() + Allwll, = D _(yi- i) A D)
=1 =0 7=0

O |w =272
ow,

X

A“’( \‘.’\ \e — CJU:V"-{\JL= +|
~ ‘)rob\m PO“)r(yb
52 ©2017 Emily Fo. CSE 446: Machine Learning
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Subgradients of convex functions

Gradients lower bound convex functions:

)
W 09 9e) 2 g+ Vy (b b-a)

=) . . .
unique at x if function
a b X differentiable at x

Subgradients: Generalize gradients to non-differentiable points:
- Any plane that lower bounds function

V& b(ﬁ (X) subgrdim-k oca ot

o(s) z 40+ V (b-a

53
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Part 2: Subgradient of L, term

N D
RSS(W) + Al = D (- Swihi6a)2 4 AD_Iw|
i=1 J=0 §=0
X
-A When w; < 0]
ADy, Wil = < [- )\)\] “When w; =0
A< when w, >0
vl
Wi
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27



1/18/2017

Putting it all together...

N D
D
RSS(w) + Allwilly = > _(yi- i) + A 2_lw|
i=1 7= j=0
Con €55 Srom M1 penalty )
P SN -A when w; < 0]
9, [lasso cost] = 2zw, — 2p;+ < [-A, \] when w; = 0
A when w; > 0
2Z)w; — 2p;— A when w; <0
2Z)W; — 2p;+ A when w; >0
55 ©2017 Emily Fo. CSF 446: Machine Learning

Optimal solution:
Set subgradient =0

2z;w; —2p;— A whenw; <0

1)
0. [lasso cost] =

[-2p-A, -2p+A] whenw,=0 = O

2z;w; —2p;+ A when w; >0
Casel(w;<0):| 2zW;—2p—A=0 For w; <0, need
N = 204% | oy X . -X
W A fi< =3
%
Case2 (w,=0); W;=0 Forv; = 0, need [-2p;-A, -2p;+A] to contain O: ,

750 =2
Case 3 (w, > 0):| 2zW;—2p;+A=0 For w; >0, need
~ RN Ly
WU': R 2z Pt) ? 2
%-
56 v ©2017 Emily FQ CSE 446 Machine Learning

so khak wW;=0 iS an

. oy opEmumn
fAx20 — po3 =2p-2<0 —P/j-z:é— 2

8<%
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Optimal solution:
Set subgradient =0

2z;w; —2p;— A whenw; <0
Owj[lasso cost] = [-2p-A, -2p;+A]  when w; =0
=0 2zw, —2p;+ A  whenw;>0

—

(b + M)z, if p, < -M2
W=< 0 if p; in [-A/2, /2]
(o,—M2)Iz,  ifp> M2

57
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Soft thresholding
(o + M2)/z;  ifpj<-NM2
wi=< 0 if p; in [-A/2, M/2]

(o,—M2)Iz,  ifp> M2

J , & [/:)LS: &_
2—.

l Y
) Py )
| 1ﬁ
\
\/Q\ " lagso
X ' w
,,t '
Iy

Pj

~YY S
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Coordinate descent for lasso

Precompute: Z —Zh

Initialize w = 0 (or smartly )
while not converged
for j=0,1,...,.D

N
compute: p; = ;hj(xi)(yi — V(W)

set: W, =< 0 if pj in [-\/2, 2]
(0j—M2)Iz;  ifp;> M2
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