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Lasso Regression:
Regularization for feature selection
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Feature selection task
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Efficiency: 
- If size(w) = 100B, each prediction is expensive

- If ŵsparse , computation only depends on # of non-zeros

Interpretability:  
- Which features are relevant for prediction?

Why might you want to perform
feature selection?

©2017 Emily Fox3

many zeros
=

ŷi =     ŵj hj(xi)
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Sparsity: Housing application

$ ?

Lot size
Single Family
Year built
Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
# floors
Flooring types
Parking type
Parking amount
Cooling
Heating
Exterior materials
Roof type
Structure style

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer
Dryer
Laundry location
Heating type
Jetted Tub
Deck
Fenced Yard
Lawn
Garden
Sprinkler System

Lot size
Single Family
Year built
Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
# floors
Flooring types
Parking type
Parking amount
Cooling
Heating
Exterior materials
Roof type
Structure style

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer
Dryer
Laundry location
Heating type
Jetted Tub
Deck
Fenced Yard
Lawn
Garden
Sprinkler System…
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Option 1: All subsets or greedy variants

©2017 Emily Fox5
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Exhaustive approach: “all subsets”

Consider all possible models, each using a subset of features

How many models were evaluated?each indexed by features included

©2017 Emily Fox

yi = εi

yi = w0h0(xi) + εi

yi = w1 h1(xi) + εi

yi = w0h0(xi) + w1 h1(xi) + εi

yi = w0h0(xi) + w1 h1(xi) + … + wD hD(xi)+ εi

…
 

…
 

[0 0 0 … 0 0 0]

[1 0 0 … 0 0 0]

[0 1 0 … 0 0 0]

[1 1 0 … 0 0 0]

[1 1 1  …  1 1 1]

…
 

…
 

2D

28 = 256
230 = 1,073,741,824
21000 = 1.071509 x 10301

2100B = HUGE!!!!!!

Typically, 
computationally 

infeasible
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Choosing model complexity?

Option 1: Assess on validation set

Option 2: Cross validation

Option 3+: Other metrics for penalizing model complexity 
like BIC…

©2017 Emily Fox
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Greedy algorithms

Forward stepwise:
Starting from simple model and iteratively add features most useful to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as 
important

Lots of other variants, too.

8
©2017 Emily Fox
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Option 2: Regularize

9 ©2017 Emily Fox
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Ridge regression: L2 regularized regression

Total cost =
measure of fit + λ measure of magnitude of coefficients

©2017 Emily Fox

RSS(w) ||w||2=w0
2+…+wD

22

Encourages small weights
but not exactly 0
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Coefficient path – ridge 

©2017 Emily Fox
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Using regularization for feature selection

Instead of searching over a discrete set of solutions, can 
we use regularization?

- Start with full model (all possible features)

- “Shrink” some coefficients exactly to 0
• i.e., knock out certain features

- Non-zero coefficients indicate “selected” features

©2017 Emily Fox



1/18/2017

7

CSE 446: Machine Learning13

Thresholding ridge coefficients?

Why don’t we just set small ridge coefficients to 0?

©2017 Emily Fox

0
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Thresholding ridge coefficients?

Selected features for a given threshold value

©2017 Emily Fox

0
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Thresholding ridge coefficients?

Let’s look at two related features…

©2017 Emily Fox

0

Nothing measuring bathrooms was included!
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Thresholding ridge coefficients?

If only one of the features had been included… 

©2017 Emily Fox

0
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Thresholding ridge coefficients?

Would have included bathrooms in selected model

©2017 Emily Fox

0

Can regularization lead directly to sparsity?
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Try this cost instead of ridge…

Total cost =
measure of fit + λ measure of magnitude of coefficients

©2017 Emily Fox

RSS(w) ||w||1=|w0|+…+|wD|

Lasso regression
(a.k.a. L1 regularized regression)

Leads to sparse solutions!
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Lasso regression: L1 regularized regression

Just like ridge regression, solution is governed by a 
continuous parameter λ

If λ=0:

If λ=∞: 

If λ in between: 

RSS(w) + λ||w||1
tuning parameter = balance of fit and sparsity

©2017 Emily Fox
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Coefficient path – ridge 
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Coefficient path – lasso 
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Fitting the lasso regression model
(for given λ value)

22 ©2017 Emily Fox
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How we optimized past objectives

To solve for ŵ, previously took gradient of total cost 
objective and either:

1) Derived closed-form solution

2) Used in gradient descent algorithm

©2017 Emily Fox
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Optimizing the lasso objective

Lasso total cost:

Issues:
1) What’s the derivative of |wj|?

2) Even if we could compute derivative, no closed-form solution

©2017 Emily Fox

RSS(w) + ||w||1λ

gradients  subgradients

can use subgradient descent
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Aside 1: Coordinate descent

©2017 Emily Fox25
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Coordinate descent

Goal: Minimize some function g

Often, hard to find minimum for all coordinates, but easy for each coordinate

Coordinate descent:

Initialize ŵ= 0 (or smartly…)

while not converged
pick a coordinate j
ŵj

©2017 Emily Fox
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Comments on coordinate descent

How do we pick next coordinate?
- At random (“random” or “stochastic” coordinate descent), round robin, …

No stepsize to choose!

Super useful approach for many problems
- Converges to optimum in some cases 

(e.g., “strongly convex”)
- Converges for lasso objective

©2017 Emily Fox
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Aside 2: Normalizing features

©2017 Emily Fox28
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Normalizing features

Scale training columns (not rows!) as:

Apply same training scale factors to test data:  

©2017 Emily Fox

hj(xk) = 
hj(xk)

hj(xi)
2

summing over training points
apply to 

test point

Training 
features

Test
features

Normalizer:
zj

Normalizer:
zj

…

hj(xk) = 
hj(xk)

hj(xi)
2

CSE 446: Machine Learning

Aside 3: Coordinate descent for
unregularized regression
(for normalized features)

©2017 Emily Fox30
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Optimizing least squares objective 
one coordinate at a time

Fix all coordinates w-j and take partial w.r.t. wj

©2017 Emily Fox

RSS(w) = (yi- wjhj(xi))2

RSS(w) = -2      hj(xi)(yi – wjhj(xi))
∂
∂wj
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Optimizing least squares objective 
one coordinate at a time

Set partial = 0 and solve

©2017 Emily Fox

RSS(w) = (yi- wjhj(xi))2

RSS(w) = -2ρj + 2wj = 0
∂
∂wj
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Coordinate descent for 
least squares regression

Initialize ŵ= 0 (or smartly…)
while not converged

for j=0,1,…,D

compute:

set:  ŵj = ρj

©2017 Emily Fox

ρj =      hj(xi)(yi –ŷi(ŵ-j))

prediction without feature j

residual
without feature j

CSE 446: Machine Learning

Coordinate descent for lasso
(for normalized features)

©2017 Emily Fox34
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Coordinate descent for 
least squares regression

Initialize ŵ= 0 (or smartly…)
while not converged

for j=0,1,…,D

compute:

set:  ŵj = ρj

©2017 Emily Fox

ρj =      hj(xi)(yi –ŷi(ŵ-j))

prediction without feature j

residual
without feature j
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Coordinate descent for lasso

Initialize ŵ= 0 (or smartly…)
while not converged

for j=0,1,…,D

compute:

set:  ŵj =

©2017 Emily Fox

ρj =      hj(xi)(yi –ŷi(ŵ-j))

ρj + λ/2       if ρj < -λ/2

ρj – λ/2       if ρj > λ/2
0 if ρj in [-λ/2, λ/2]
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Soft thresholding

©2017 Emily Fox

ŵj

ρj

ŵj =
ρj + λ/2       if ρj < -λ/2

ρj – λ/2       if ρj > λ/2
0 if ρj in [-λ/2, λ/2]

CSE 446: Machine Learning38

How to assess convergence?

Initialize ŵ= 0 (or smartly…)
while not converged

for j=0,1,…,D

compute:

set:  ŵj =

©2017 Emily Fox

ρj =      hj(xi)(yi –ŷi(ŵ-j))

ρj + λ/2       if ρj < -λ/2

ρj – λ/2       if ρj > λ/2
0 if ρj in [-λ/2, λ/2]
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When to stop?

For convex problems, will start to take 
smaller and smaller steps

Measure size of steps taken in a 
full loop over all features
- stop when max step < ε

Convergence criteria

©2017 Emily Fox
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Other lasso solvers

©2017 Emily Fox

Classically: Least angle regression (LARS) [Efron et al. ‘04]

Then: Coordinate descent algorithm [Fu ‘98, Friedman, Hastie, & Tibshirani ’08]

Now:

• Parallel CD (e.g., Shotgun, [Bradley et al. ‘11])

• Other parallel learning approaches for linear models
- Parallel stochastic gradient descent (SGD) (e.g., Hogwild! [Niu et al. ’11])

- Parallel independent solutions then averaging [Zhang et al. ‘12] 

• Alternating directions method of multipliers (ADMM) [Boyd et al. ’11]



1/18/2017

21

CSE 446: Machine Learning

Coordinate descent for lasso
(for unnormalized features)

©2017 Emily Fox41
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Coordinate descent for lasso
with normalized features

Initialize ŵ= 0 (or smartly…)
while not converged

for j=0,1,…,D

compute:

set:  ŵj =

©2017 Emily Fox

ρj =      hj(xi)(yi –ŷi(ŵ-j))

ρj + λ/2       if ρj < -λ/2

ρj – λ/2       if ρj > λ/2
0 if ρj in [-λ/2, λ/2]
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Coordinate descent for lasso
with unnormalized features

Precompute:

Initialize ŵ= 0 (or smartly…)
while not converged

for j=0,1,…,D

compute:

set:  ŵj =

©2017 Emily Fox

zj =     hj(xi)
2

ρj =      hj(xi)(yi –ŷi(ŵ-j))

(ρj + λ/2)/zj if ρj < -λ/2

(ρj – λ/2)/zj if ρj > λ/2
0 if ρj in [-λ/2, λ/2]

CSE 446: Machine Learning

How to choose λ

44 ©2017 Emily Fox



1/18/2017

23

CSE 446: Machine Learning45

If sufficient amount of data…

©2017 Emily Fox

Validation 
set

Training set
Test 
set

fitŵλ
test performance 
ofŵλ to select λ*

assess 
generalization 

error of ŵλ*

CSE 446: Machine Learning

Summary for feature selection 
and lasso regression

©2017 Emily Fox46
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Impact of feature selection and lasso

Lasso has changed machine learning, 
statistics, & electrical engineering

But, for feature selection in general, be careful about 
interpreting selected features

- selection only considers features included

- sensitive to correlations between features

- result depends on algorithm used

- there are theoretical guarantees for lasso under certain conditions

©2017 Emily Fox
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What you can do now…
• Describe “all subsets” and greedy variants for feature selection

• Analyze computational costs of these algorithms

• Formulate lasso objective

• Describe what happens to estimated lasso coefficients as tuning 
parameter λ is varied

• Interpret lasso coefficient path plot

• Contrast ridge and lasso regression

• Estimate lasso regression parameters using an iterative coordinate 
descent algorithm

©2017 Emily Fox



1/18/2017

25

CSE 446: Machine Learning

Deriving the lasso coordinate
descent update

©2017 Emily Fox49
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Optimizing lasso objective 
one coordinate at a time

Fix all coordinates w-j and take partial w.r.t. wj

©2017 Emily Fox

RSS(w) + λ||w||1 = (yi- wjhj(xi))2 + λ |wj| 

derive without normalizing features
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Part 1: Partial of RSS term

©2017 Emily Fox

RSS(w) + λ||w||1 = (yi- wjhj(xi))2 + λ |wj| 

RSS(w) = -2      hj(xi)(yi – wjhj(xi))
∂
∂wj
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Part 2: Partial of L1 penalty term

©2017 Emily Fox

RSS(w) + λ||w||1 = (yi- wjhj(xi))2 + λ |wj| 

λ |wj| = ???∂
∂wj

|x|

x
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Subgradients of convex functions
Gradients lower bound convex functions:

Subgradients: Generalize gradients to non-differentiable points:
- Any plane that lower bounds function

©2017 Emily Fox

ba
unique at x if function 

differentiable at x

g(x)

x

|x|

x
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Part 2: Subgradient of L1 term

©2017 Emily Fox

RSS(w) + λ||w||1 = (yi- wjhj(xi))2 + λ |wj| 

λ∂ |wj| =wj

|wj|

wj

-λ when wj < 0

λ when wj > 0
[-λ,λ] when wj = 0
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Putting it all together…

©2017 Emily Fox

RSS(w) + λ||w||1 = (yi- wjhj(xi))2 + λ |wj| 

∂ [lasso cost] = 2zjwj – 2ρj +wj

-λ when wj < 0

λ when wj > 0
[-λ, λ] when wj = 0

2zjwj – 2ρj – λ when wj < 0

2zjwj – 2ρj + λ when wj > 0
[-2ρj-λ, -2ρj+λ] when wj = 0=
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Optimal solution: 
Set subgradient = 0

©2017 Emily Fox

∂ [lasso cost] = = 0wj

Case 1 (wj < 0):

Case 2 (wj = 0):

Case 3 (wj > 0):

2zjŵj – 2ρj – λ = 0

ŵj = 0

For ŵj < 0, need 

For ŵj = 0, need [-2ρj-λ, -2ρj+λ] to contain 0:

2zjŵj – 2ρj + λ = 0 For ŵj > 0, need 

2zjwj – 2ρj – λ when wj < 0

2zjwj – 2ρj + λ when wj > 0
[-2ρj-λ, -2ρj+λ] when wj = 0
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Optimal solution: 
Set subgradient = 0

©2017 Emily Fox

∂ [lasso cost] =

= 0
wj

(ρj + λ/2)/zj if ρj < -λ/2

(ρj – λ/2)/zj if ρj > λ/2
0 if ρj in [-λ/2, λ/2]ŵj =

2zjwj – 2ρj – λ when wj < 0

2zjwj – 2ρj + λ when wj > 0
[-2ρj-λ, -2ρj+λ] when wj = 0

CSE 446: Machine Learning58 ©2017 Emily Fox

ŵj

ρj

(ρj + λ/2)/zj if ρj < -λ/2

(ρj – λ/2)/zj if ρj > λ/2
0 if ρj in [-λ/2, λ/2]ŵj =

Soft thresholding
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Coordinate descent for lasso

Precompute:

Initialize ŵ= 0 (or smartly…)
while not converged

for j=0,1,…,D

compute:

set:  ŵj =

©2017 Emily Fox

zj =     hj(xi)
2

ρj =      hj(xi)(yi –ŷi(ŵ-j))

(ρj + λ/2)/zj if ρj < -λ/2

(ρj – λ/2)/zj if ρj > λ/2
0 if ρj in [-λ/2, λ/2]


