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Ensemble methods: Each classifier “votes” on prediction

X; = (Income=%$120K, Credit=Bad, Savings=$50K, Market=Good)

\ f,(x) = +1
Combine?
Ensemble —
model Learn coefficients

F(x;) = sign(w; f,(x;) + W, f5(x) + Wa T5(x;) + W T4(x)))
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Boosting = Greedy learning ensembles from data

Training data

Higher weight Learn classifier

for points where :
X) is wrong Predict

Weighted data

Learn classifier & coefficient

Predict
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AdaBoost: learning ensemble

« Start with same weight for all points: o, = 1/N

e Fort=1,...T

- Learn f(x) with data weights o; g, — 1, ( L= weighted-error(f:)
— . / 2 weighted_error(f;)
- Compute coefficient W,

- Recompute weights o,

* Final model predicts by:

T
Y = sign (Z Wtft(x)>
t=1
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AdaBoost: Updating weights o, based on
where classifier f,(x) makes mistakes

Decrease

Yes

Did . get x; right?

NO
Increase
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AdaBoost: Formula for updating weights o,

P

o€ i fx)=y

Q eWt, If f.(x)=y,

e e

I
yLs £2T20. feeremsg, Pertonae

Yes - s
Did ', get x; right? yes 0O e no change
o 23 32498 incresce [ TOTINCE
No L st K,y
ne o e = | ne change

7
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AdaBoost: learning ensemble

« Start with same weight for all points: o, = 1/N

e Fort=1,.T
- Learn f(x) with data weights o; _, = 1 <1 - @eighted_ermr( )
- Compute coefficient v, — 2 weighted_error(f:)

- Recompute weights o,

\ Q e_Wt, If ,(x)=y
« Final model predicts by: % € A

T Q; eWt, If f,(x)=y,
y = sign (Z virtft(x)> —
t=1
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AdaBoost: Normalizing weights o,

If x; often mistake, If x; often correct,
weight o; gets very weight o; gets very
large small

Can cause numerical instability
after many iterations

Normalize weights to
add up to 1 after every iteration

Y
2
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AdaBoost: learning ensemble

« Start with same weight for T (1 — weighted_error(f;)
all points: a; = 1/N t2 weighted_error(f,)
e Fort=1,.T — .
: : -W; .
- Learn f,(x) with glqta W?lghts Q; a e t’ if ft(Xi):yi
- Compute coefficient \v, «
n L/a' B Wt .
- Recompute weights a; o€ | if f.(X)2Y,
- Normalize weights q; —

« Final model predicts by: \ T
T o — %
g = sign <Z Wtft(x)> Z;V:1 Qj
=1
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AdaBoost example:
A visualization

12

t=1: Just learn a classifier on original data
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x[2]

Learned decision stump f,(x)
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Updating weights o,

Increase weight

of misclassified points
New data weights o,

Boundary

r

Learned decision stump f,(x)

4
3
2 —
~ L ~
% 0 =
-1 -1
-2 =2}
34 -3 2 -1 0 1 2 3 25 4 -3 -2 -1 0 1 2 3
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t=2: Learn classifier on weighted data
fl(X)(}-
:;5 -4 -3 -2 -1 0 1 2 3 ?\:k
[
. . )
Weighted data: using o; v‘)g‘;g;(:3{:*1%\"&Learned decision stump f,(x)
fhosen In previous iteration . on weighted data
3t - — L/ \/ 3
2! = - ] 2
~ 1" TR ~ 1
X of - + E #, < 0
-1} - -+ +_+ + -1
—2L = - + + ] -2
L S — -3
-5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3

X[1] X[1]
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Ensemble becomes weighted sum of learned
classifiers
4000’//5_@”\%

0.61| + 053

) // o Ole,ﬁini—fe

uncertein y=
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1.0

Decision boundary of ensemble classifier
after 30 iterations
4
3
2 w0
1 deciston o i /
~ & crey.
< 0
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35 -4 -3 -2-10 1 2 3 AL
x[1]
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AdaBoost example:
Boosted decision stumps step-by-step

Boosted decision stumps

« Start same weight for all points: o; = 1/N

e Fort=1,....T

- Learn f,(x): pick decision stump with lowest
weighted training error according to o,

- Compute coefficient \i,

- Recompute weights o,

- Normalize weights q;

* Final model predicts by:

T
U = sign (Z viftft(x))
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19

Finding best next decision stump f,(x)

Consider splitting on each feature:

Market conditions?

Income>$100K? Savings>$100K?

Credit history?

=03 =04

Income>$100K?
— Yes No

Safe Risky

Wt _ %ln (1 — weighted-error(fﬁ) — 069

weighted_error(f;)

©2017 Emily Fo CSE 446: Machine Learning
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Boosted decision stumps

« Start same weight for all points: o; = 1/N

e Fort=1,....T

Learn f,(x): pick decision stump with lowest
weighted training error according to o,

Compute coefficient W,

Recompute weights q;

Normalize weights o,

 Final model predicts by:

T
U = sign (Z viftft(x)>

©2017 Emily Fo CSE 446: Machine Learning
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Updating weights o, W

W
o € ‘= q e0:69

Previous New
weighta weight a
0.5 0.5/2 =0.25
15 0.75
15 2*15=3
2
1
25
3

Credit Income

0.5
1
0.5
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> O|O0O|B®>> O W >

o € '=q e-069_

/2, if o=y,

20Li , 1F £(x)=y,

CSE 446 Machine Learning

Boosting convergence & overfitting
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Boosting question revisited

“Can a set of weak learners be combined to

create a stronger learner?” Kearns and Valiant (1988)

¥
Yes! Schapire (1990)
T

Boosting

23 ©2017 Fmilv Fox CSE 446 Machine Learning |

After some iterations,
training error of boosting goes to zero!!!

Training error of
0.25 1 decision stump = 22.5%

Training error of ensemble of
30 decision stumps = 0%

o
[
U1

Boosted

Training error
o
)

0.05 decision
stumps on
‘ , toy dataset
0.000 10 20 30 _ 40
Iterations of boosting
24 ©2017 Emily Fox CSE 446: Machine | eaming |
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AdaBoost Theorem

Under some technical conditions...

May oscillate a bit

0.25 ‘ ‘
— But will
g 0.20} generally decrease, &
Traini ; 20.15- eventually become 0!
raining err_qr (@) ..
boosted classifier — O c°
IC—E 0.05}
0-9% 10 _ 2v——30 40 50
Iterations of boosting
25 ©2017 tmiy Fox Lot 4o viacnine teamning |

Condition of AdaBoost Theorem

Under some technical conditions...

Training error of
boosted classifier - 0

Condition = At every t,

can find a weak learner with
weighted_error(f,) < 0.5

‘ Extreme example:

No classifier can
Not always separate a +1
3 on top of -1
possible

A 4

as T—>°°

Nonetheless, boosting often
yields great training error

26 ©2017 Fmilv Fox CSE 446 Machine Learning |
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AdaBoost Theorem more formally

Tralnlng error of (lnal classifier is bounded by:

/\Jv\ 1 N
— ZH :U,L # ;] < N Zexp(—yiscore(xi))

i=1

Where scofe(x) = Z@tht(a:); F(x) = sign(score(z))

bowun o

\\\ los¢ <m0°¥(,\ IPP@(
Kf(,’y; SLoreCY;)) b/ loss

=—r L/— L
] M’ Vs Seore (%)

'0/(7 losS
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Usurr 09 # atL
loss”
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AdaBoost Theorem more formally

Training error of final classifier is bounded by:

ZDt 1) exp(—wey; fr ()

N

1
— ZH () # 3] < N Zexp( yiscore(z;))

=1

||::]ﬂ

Where score(x) = Z@tht(a:); F(x) = sign(score(z))
t

Pﬁ.‘ Aw :'/ “telescopic cums’

/

\c -%'t £ ‘ V‘e =) 0s T—%DJ , -kr,u‘/\'nﬂ? ryea-la -b@

Loy Mg tf’;'/—_ Mntovets eol wpper bound — O ex p. Fact
\ N With T
e jceratens ( l)
oC

ww "‘A?gf
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AdaBoost Theorem more formally

T

If we minimize HZt, we minimize our training error
t=1

We can tighten this bound greedily by choosing \W;, f, on each
iteration to minimize:

N
Zy =Y Dy(i) exp(—ibyy; fr(w:)) ve dor-*
2 Lo =0
et =

For boolean target function, this is accomplished by [Freund & Schapire ‘97]:

" 1 1 1— €
we = — In
t 2 €
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ned  clocs: e o’

29

AdaBoost Theorem more formally

If each classifier is (at least slightly) better than random
€ < 0.5

AdaBoost will achieve zero training error (exponentially fast):

T
exp (2 > (12— et)2>
t=1
\___\/\/
Wpper bound 05 Ey woves
Pper away Erom L

ya XPO"W"* je:l;;'
bigger

SR A vl < [ %
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Decision trees on loan data

0.40 39% test error
.35 /N

g 0.30 »\%
§ 025 %o,

°
2020

Overfitting

a
2015
¥]

0.10)| == Training Erfo Rt
8% training error
&

.05 & g 10 12 14 16 1
Tree depth

.=
Boosted decision stumps on loan data

.36

=== Training Error
o ool
B33
Zom 32% test error

£on or® _
o3 dmilef Better fit & lower test error

.29 -
028 28.5% training error
’ 2 4 & é 10 12 14 16 18

31 # iterations
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Boosting tends to be robust to overfitting
0.36 :
0.34 = Training Error | |
= Test Error
5 0.32f
5 0.30] t \
'4% 2;? ~ Test set performance about
% 024l ( constant for many iterations
S 022 ‘ => Less sensitive to choice of T
0.20} ; |
0-185 50 100 : 150 200
# of trees
LT
pry ot ghese VAWE‘ 2
wo“‘a u N
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16



2/1/2017

But boosting will eventually overfit,

SO must choose max number of components T

0.40 .
= Training Error
0.35 = Test Error |
5 0.30
"E 0.25
2 o0 Best test error around 31%
2 0.20}

3"; 0.15} s e
Eo.10 = -
eases to % (ove
0.05}
0-005 1000 2000 3000 4000 5000
# of trees
33 ©2017 Emily EQ CSE 446: Machine Leaming |
How do we decide when to stop boosting?
Choosing T?
Like selecting parameters in other ML
approaches (e.g., A in regularization)
Not on NBVET BT Cross-
. ever ever on Validation set o
training data test data validation
Not useful: training If dataset is large For smaller data
errorimproves
as T increases
34 ©2017 Emily EQ CSE 446: Machine Leaming |
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What is logistic regression minimizing?

Logistic regression assumes:

1 [vs)= £ Wihts)
= — ofC < J J
Ply=+1]z) 1 + exp(—score(x;)) St )

And tries to maximize data likelihood:

a 1 =) i -[V\P[DIW/X)

AN\ P D 5 =
‘V‘Z\axg (Dlw,x) E 1 + exp(—y;score(x;)) w

Equivalent to minimizing log loss

N
> In(1 + exp(—y;score(;)))

=1

36 ©2017 Emily Fo CSE 446 Machine Learning |
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Logistic regression vs boosting objectives

N
Logistic regression minimizes: » "In(1 + exp(—ygscore(;)))
=1
Boosting minimizes similar loss function' score(w Z W fi(w
K Z exp(—y;score(x;)) H 4

fos $ Cocuses Mo Both smooth

0 Vel'y P?.‘?::»S‘AJ approximations
of 0/1 loss!

7‘ — ~— u’,;score,()q)

é/l loss
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Logistic regression vs boosting overview

Logistic regression: Boosting:
. Minimize loss fn * Minimize loss fn
loss G N
Zln (1 + exp(—y;score(x;))) &7 Zexp —yiscore(a;))
1=1
. Define * Define

score(x ij (r) 6——>  score(z) = thft<x):
¢

where features hj( ) are predefined  where f(x) defined dynamically to fit data

N (not a linear classifier)
* Weights W, learned in joint
HS H _ . " .
optimization « Weights W, learned incrementally
———— e —
38 ©2017 Emily Fo CSE 446: Machine Learning
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Summary of boosting
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Variants of boosting and related algorithms

There are hundreds of variants of boosting, most important:

Gradient

boosting g Like AdaBoost, but useful beyond basic classification

Many other approaches to learn ensembles, most important:

e Bagging: Pick random subsets of the data

- Learn a tree in each subset

Random - Average predictions

[eli=si - e Simpler than boosting & easier to parallelize

« Typically higher error than boosting for same # of trees
(# iterations T)

40 ©2017 Emily Fo CSE 446 Machine Learning |
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Impact of boosting (spoiler alert... HUGE IMPACT)

Amongst most useful ML methods ever created

Extremely useful in
computer vision

» Standard approach for face detection, for example

Used by mOSt winners Of « Malware classification, credit fraud detection, ads
141 click through rate estimation, sales forecasting,
M L Com petltl OnS ranking webpages for search, Higgs boson

(Kaggle’ KDD Cup’) detection,...

Most deployed ML systems use e e R
model ensembles bagging, or others

41 ©2017 Emily Fox CSE 446 Machine Learning

What you can do now...

* Identify notion ensemble classifiers
* Formalize ensembles as the weighted combination of simpler classifiers
* Outline the boosting framework —
sequentially learn classifiers on weighted data
* Describe the AdaBoost algorithm
- Learn each classifier on weighted data
- Compute coefficient of classifier
- Recompute data weights
- Normalize weights
* Implement AdaBoost to create an ensemble of decision stumps
» Discuss convergence properties of AdaBoost & how to pick the maximum
number of iterations T
» Derive why AdaBoost leads to zero training error exponentially fast
* Compare and contrast what AdaBoost and logistic regression are minimizing

42 ©2017 Emily Fox CSE 446 Machine Learning
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Instance-Based
Learning:

Nearest neighbor and kernel regression and
classificiation

CSE 446: Machine Learning
Emily Fox

University of Washington
February 1, 2017

Fit globally vs. fit locally

22
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Parametric models of f(x)

YA
a
)
a
aa
—_ Q
@ & a a [~}
o a Ll | a
o QQQ
2 .
o gl a
a
(]
S
C
sq.ft. X
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Parametric models of f(x)

Y 4

>

price ($)

><V

sq.ft.
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Parametric models of f(x)

YA
2 :
°]
8 s @ @@ 3
1
@a
a
sq.ft. X
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Parametric models of f(x)
YA
&
]
Q
1
sq.ft. X
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49

f(x) is not really a polynomial

Y 4

price ($)

sq.ft.

©2017 Emily FO
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What alternative do we have?

If we:
- Want to allow flexibility in f(x) having local structure
- Don’t want to infer “structural breaks”

What's a simple option we have?
- Assuming we have plenty of data...

©2017 Emily FO
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Simplest approach:

Nearest neighbor regression

Fit locally to each data point

Predicted value = “closest” y, e e

(1-NN)
ya regression
& ° 4
< <
~ § & \‘5'\\%@‘} —ﬁ—
X
Ol NS A
€ oK e L
Q| J&s Y
5_ ° & S Here, this is
\ S the closest
Lo & b@ datapoint
EEER
oS
L
sq.ft X
52 ©2017 Emily Fox CSE 446 Machine Learning
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What people do naturally...

Real estate agent assesses value by finding sale of

most similar house

©2017 Emily FO
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1-NN regression more formally

Dataset of (£%,5) pairs: (X,Y1), (XoY),-(XnYn)
g7

Query point: X, ﬁ L,igqrir;: onse

1. Find “closest” x; in dataset

Xoy &—min Aiskance (X;,%Xg) Y/
“ 6

Cd

\pio‘) Y“&%w{ e

2. Predict

price ($)

A
- WN X
\7‘1’ colea ¥ aﬂ\/\o"‘"‘

(

Here, this is
the closest
datapoint

loiy ¥
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Visualizing 1-NN in multiple dimensions

- Voronoi tesselation (or diagram):

- Divide space into N regions, each
containing 1 datapoint

| - Defined such that any x in region is
“closest” to region’s datapoint

Don’t explicitly form!

55
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Distance metrics: Defining notion of “closest”

In 1D, just Euclidean distance:

distance(X;,x,) = [X;-Xg|

In multiple dimensions:
- can define many interesting distance functions
- most straightforwardly, might want to weight different dimensions differently

©2017 Emily Fo CSE 446: Machine Learning
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Weighting housing inputs

Some inputs are more relevant than others

# bedrooms
# bathrooms
sg.ft. living
sq.ft. lot

floors

year built

year renovated
waterfront

'\

S7 ©2017 Emily Fo CSE 446: Machine Learning

Scaled Euclidean distance

Formally, this is achieved via

distance(x;, x,) = \/ a‘lixj[l]—xq[l])2 + ;gld(xj[d]-Xq[d])2

\/

weight on each input
(defining relative importance)

Other example distance metrics:

- Mahalanobis, rank-based, correlation-based, cosine similarity, Manhattan,
Hamming, ...

58 ©2017 Emily Fo CSE 446: Machine Learning
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Different distance metrics lead to different
predictive surfaces

Euclidean distance Manhattan distance

J
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Can 1-NN be used for classification?

Yesl!

Just predict class of neighbor

60 ©2017 Emily FO CSE 446 Machine Learning
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