
2/1/2017

1

CSE 446: Machine Learning©2017 Emily Fox

CSE 446: Machine Learning
Emily Fox
University of Washington
February 1, 2017

Boosting

CSE 446: Machine Learning2 ©2017 Emily Fox

Ensemble methods: Each classifier “votes” on prediction
xi = (Income=$120K, Credit=Bad, Savings=$50K, Market=Good)

f1(xi) = +1

Combine?

F(xi) = sign(w1 f1(xi) + w2 f2(xi) + w3 f3(xi) + w4 f4(xi))

Ensemble
model Learn coefficients

Income>$100K?

Safe Risky

NoYes

Credit history?

Risky Safe

GoodBad

Savings>$100K?

Safe Risky

NoYes

Market conditions?

Risky Safe

GoodBad

Income>$100K?

Safe Risky

NoYes

f2(xi) = -1

Credit history?

Risky Safe

GoodBad

f3(xi) = -1

Savings>$100K?

Safe Risky

NoYes

f4(xi) = +1

Market conditions?

Risky Safe

GoodBad

2/1/2017

2

CSE 446: Machine Learning3

Boosting = Greedy learning ensembles from data

©2017 Emily Fox

Training data

Predict ŷ= sign(f1(x))

Learn classifier
f1(x)

Weighted data

Learn classifier & coefficient
ŵ,f2(x)

Predict ŷ= sign(ŵ1 f1(x) + ŵ2 f2(x))

Higher weight
for points where

f1(x) is wrong

CSE 446: Machine Learning4

AdaBoost: learning ensemble

• Start with same weight for all points: αi = 1/N

• For t = 1,…,T
- Learn ft(x) with data weights αi

- Compute coefficient ŵt

- Recompute weights αi

• Final model predicts by:

©2017 Emily Fox

2/1/2017

3

CSE 446: Machine Learning

Recompute weights αi

©2017 Emily Fox

CSE 446: Machine Learning6

AdaBoost: Updating weights αi based on
where classifier ft(x) makes mistakes

©2017 Emily Fox

Did ft get xi right?

Decrease αiYes

Increase αi
No

2/1/2017

4

CSE 446: Machine Learning7

AdaBoost: Formula for updating weights αi

©2017 Emily Fox

ft(xi)=yi ? ŵt Multiply αi by Implication

Did ft get xi right?
Yes

No

αi 
αi e , if ft(xi)=yi

-ŵt

αi e , if ft(xi)≠yi

ŵt

CSE 446: Machine Learning8

AdaBoost: learning ensemble

• Start with same weight for all points: αi = 1/N

• For t = 1,…,T
- Learn ft(x) with data weights αi

- Compute coefficient ŵt

- Recompute weights αi

• Final model predicts by:

©2017 Emily Fox

αi 
αi e , if ft(xi)=yi

-ŵt

αi e , if ft(xi)≠yi

ŵt

2/1/2017

5

CSE 446: Machine Learning9

AdaBoost: Normalizing weights αi

©2017 Emily Fox

If xi often mistake,
weight αi gets very

large

If xi often correct,
weight αi gets very

small

Can cause numerical instability
after many iterations

Normalize weights to
add up to 1 after every iteration

CSE 446: Machine Learning10

AdaBoost: learning ensemble

• Start with same weight for
all points: αi = 1/N

• For t = 1,…,T
- Learn ft(x) with data weights αi

- Compute coefficient ŵt

- Recompute weights αi

- Normalize weights αi

• Final model predicts by:

©2017 Emily Fox

αi 
αi e , if ft(xi)=yi

-ŵt

αi e , if ft(xi)≠yi

ŵt

2/1/2017

6

CSE 446: Machine Learning

AdaBoost example:
A visualization

©2017 Emily Fox

CSE 446: Machine Learning12

t=1: Just learn a classifier on original data

©2017 Emily Fox

Learned decision stump f1(x)Original data

2/1/2017

7

CSE 446: Machine Learning13

Updating weights αi

©2017 Emily Fox

Learned decision stump f1(x) New data weights αi
Boundary

Increase weight αi
of misclassified points

CSE 446: Machine Learning14

t=2: Learn classifier on weighted data

©2017 Emily Fox

Learned decision stump f2(x)
on weighted data

Weighted data: using αi
chosen in previous iteration

f1(x)

2/1/2017

8

CSE 446: Machine Learning15

Ensemble becomes weighted sum of learned
classifiers

©2017 Emily Fox

=
f1(x) f2(x)

0.61

ŵ1

+ 0.53

ŵ2

CSE 446: Machine Learning16

Decision boundary of ensemble classifier
after 30 iterations

©2017 Emily Fox

training_error = 0

2/1/2017

9

CSE 446: Machine Learning

AdaBoost example:
Boosted decision stumps step-by-step

©2017 Emily Fox

CSE 446: Machine Learning18

Boosted decision stumps

• Start same weight for all points: αi = 1/N

• For t = 1,…,T
- Learn ft(x): pick decision stump with lowest

weighted training error according to αi

- Compute coefficient ŵt

- Recompute weights αi

- Normalize weights αi

• Final model predicts by:

©2017 Emily Fox

2/1/2017

10

CSE 446: Machine Learning19

Finding best next decision stump ft(x)

©2017 Emily Fox

Consider splitting on each feature:

weighted_error
= 0.2

weighted_error
= 0.35

weighted_error
= 0.3

weighted_error
= 0.4

= 0.69ŵt

Income>$100K?

Safe Risky

NoYes

Credit history?

Risky Safe

GoodBad

Savings>$100K?

Safe Risky

NoYes

Market conditions?

Risky Safe

GoodBad

ft = Income>$100K?

Safe Risky

NoYes

CSE 446: Machine Learning20

Boosted decision stumps

• Start same weight for all points: αi = 1/N

• For t = 1,…,T
- Learn ft(x): pick decision stump with lowest

weighted training error according to αi

- Compute coefficient ŵt

- Recompute weights αi

- Normalize weights αi

• Final model predicts by:

©2017 Emily Fox

2/1/2017

11

CSE 446: Machine Learning21

Updating weights αi

©2017 Emily Fox

= αi e-0.69 = αi/2

= αi e0.69 = 2αi

, if ft(xi)=yi

, if ft(xi)≠yi

αi 
αi e

-ŵt

αi e
ŵt

Credit Income y

A $130K Safe

B $80K Risky

C $110K Risky

A $110K Safe

A $90K Safe

B $120K Safe

C $30K Risky

C $60K Risky

B $95K Safe

A $60K Safe

A $98K Safe

Credit Income y ŷ

A $130K Safe Safe

B $80K Risky Risky

C $110K Risky Safe

A $110K Safe Safe

A $90K Safe Risky

B $120K Safe Safe

C $30K Risky Risky

C $60K Risky Risky

B $95K Safe Risky

A $60K Safe Risky

A $98K Safe Risky

Credit Income y ŷ
Previous
weight α

New
weight α

A $130K Safe Safe 0.5

B $80K Risky Risky 1.5

C $110K Risky Safe 1.5

A $110K Safe Safe 2

A $90K Safe Risky 1

B $120K Safe Safe 2.5

C $30K Risky Risky 3

C $60K Risky Risky 2

B $95K Safe Risky 0.5

A $60K Safe Risky 1

A $98K Safe Risky 0.5

Credit Income y ŷ
Previous
weight α

New
weight α

A $130K Safe Safe 0.5 0.5/2 = 0.25

B $80K Risky Risky 1.5 0.75

C $110K Risky Safe 1.5 2 * 1.5 = 3

A $110K Safe Safe 2 1

A $90K Safe Risky 1 2

B $120K Safe Safe 2.5 1.25

C $30K Risky Risky 3 1.5

C $60K Risky Risky 2 1

B $95K Safe Risky 0.5 1

A $60K Safe Risky 1 2

A $98K Safe Risky 0.5 1

Income>$100K?

Safe Risky

NoYes

CSE 446: Machine Learning

Boosting convergence & overfitting

©2017 Emily Fox

2/1/2017

12

CSE 446: Machine Learning23

Boosting question revisited

“Can a set of weak learners be combined to
create a stronger learner?” Kearns and Valiant (1988)

Yes! Schapire (1990)

Boosting

©2017 Emily Fox

CSE 446: Machine Learning24

After some iterations,
training error of boosting goes to zero!!!

©2017 Emily Fox

Tr
ai

n
in

g
 e

rr
o

r

Iterations of boosting

Boosted
decision
stumps on
toy dataset

Training error of ensemble of
30 decision stumps = 0%

Training error of
1 decision stump = 22.5%

2/1/2017

13

CSE 446: Machine Learning25

AdaBoost Theorem

Under some technical conditions…

Training error of
boosted classifier → 0

as T→∞

©2017 Emily Fox

Tr
ai

n
in

g
 e

rr
o

r

Iterations of boosting

May oscillate a bit

But will
generally decrease, &
eventually become 0!

CSE 446: Machine Learning26

Condition of AdaBoost Theorem

Under some technical conditions…

Training error of
boosted classifier → 0

as T→∞

©2017 Emily Fox

Extreme example:
No classifier can

separate a +1
on top of -1

Condition = At every t,
can find a weak learner with

weighted_error(ft) < 0.5

Not always
possible

Nonetheless, boosting often
yields great training error

2/1/2017

14

CSE 446: Machine Learning27

AdaBoost Theorem more formally
Training error of final classifier is bounded by:

Where

©2017 Emily Fox

CSE 446: Machine Learning28

AdaBoost Theorem more formally
Training error of final classifier is bounded by:

Where

©2017 Emily Fox

2/1/2017

15

CSE 446: Machine Learning29

AdaBoost Theorem more formally

If we minimize , we minimize our training error

We can tighten this bound greedily by choosing ŵt, ft on each
iteration to minimize:

For boolean target function, this is accomplished by [Freund & Schapire ‘97]:

©2017 Emily Fox

CSE 446: Machine Learning30

AdaBoost Theorem more formally

If each classifier is (at least slightly) better than random

AdaBoost will achieve zero training error (exponentially fast):

©2017 Emily Fox

2/1/2017

16

CSE 446: Machine Learning31 ©2017 Emily Fox

Boosted decision stumps on loan data

Decision trees on loan data
39% test error

8% training error

Overfitting

32% test error

28.5% training error

Better fit & lower test error

CSE 446: Machine Learning32

Boosting tends to be robust to overfitting

©2017 Emily Fox

Test set performance about
constant for many iterations
 Less sensitive to choice of T

2/1/2017

17

CSE 446: Machine Learning33

But boosting will eventually overfit,
so must choose max number of components T

©2017 Emily Fox

Best test error around 31%

Test error eventually
increases to 33% (overfits)

CSE 446: Machine Learning34

How do we decide when to stop boosting?

Choosing T ?

Not on
training data

Never ever
ever ever on

test data
Validation set Cross-

validation

Like selecting parameters in other ML
approaches (e.g., λ in regularization)

©2017 Emily Fox

Not useful: training
error improves
as T increases

If dataset is large For smaller data

2/1/2017

18

CSE 446: Machine Learning

AdaBoost vs logistic regression

©2017 Emily Fox

CSE 446: Machine Learning36

What is logistic regression minimizing?

Logistic regression assumes:

And tries to maximize data likelihood:

Equivalent to minimizing log loss

©2017 Emily Fox

2/1/2017

19

CSE 446: Machine Learning37

Logistic regression vs boosting objectives

Logistic regression minimizes:

Boosting minimizes similar loss function:

©2017 Emily Fox

Both smooth
approximations
of 0/1 loss!

CSE 446: Machine Learning38

Logistic regression vs boosting overview

©2017 Emily Fox

Logistic regression:

• Minimize loss fn

• Define

where features hj(x) are predefined

• Weights ŵt learned in joint
optimization

Boosting:

• Minimize loss fn

• Define

where ft(x) defined dynamically to fit data

(not a linear classifier)

• Weights ŵt learned incrementally

2/1/2017

20

CSE 446: Machine Learning

Summary of boosting

©2017 Emily Fox

CSE 446: Machine Learning40

Variants of boosting and related algorithms

©2017 Emily Fox

There are hundreds of variants of boosting, most important:

Many other approaches to learn ensembles, most important:

• Like AdaBoost, but useful beyond basic classificationGradient
boosting

• Bagging: Pick random subsets of the data
- Learn a tree in each subset
- Average predictions

• Simpler than boosting & easier to parallelize
• Typically higher error than boosting for same # of trees

(# iterations T)

Random
forests

2/1/2017

21

CSE 446: Machine Learning41

Impact of boosting (spoiler alert... HUGE IMPACT)

• Standard approach for face detection, for example
Extremely useful in

computer vision

• Malware classification, credit fraud detection, ads
click through rate estimation, sales forecasting,
ranking webpages for search, Higgs boson
detection,…

Used by most winners of
ML competitions

(Kaggle, KDD Cup,…)

• Coefficients chosen manually, with boosting, with
bagging, or others

Most deployed ML systems use
model ensembles

©2017 Emily Fox

Amongst most useful ML methods ever created

CSE 446: Machine Learning42

What you can do now…

• Identify notion ensemble classifiers
• Formalize ensembles as the weighted combination of simpler classifiers
• Outline the boosting framework –

sequentially learn classifiers on weighted data
• Describe the AdaBoost algorithm

- Learn each classifier on weighted data
- Compute coefficient of classifier
- Recompute data weights
- Normalize weights

• Implement AdaBoost to create an ensemble of decision stumps
• Discuss convergence properties of AdaBoost & how to pick the maximum

number of iterations T
• Derive why AdaBoost leads to zero training error exponentially fast
• Compare and contrast what AdaBoost and logistic regression are minimizing

©2017 Emily Fox

2/1/2017

22

CSE 446: Machine Learning

Instance-Based
Learning:
Nearest neighbor and kernel regression and
classificiation

©2017 Emily Fox

CSE 446: Machine Learning
Emily Fox
University of Washington
February 1, 2017

CSE 446: Machine Learning

Fit globally vs. fit locally

©2017 Emily Fox

2/1/2017

23

CSE 446: Machine Learning45

Parametric models of f(x)

©2017 Emily Fox

y

sq.ft.

p
ri

ce
 (

$
)

x

CSE 446: Machine Learning46

Parametric models of f(x)

©2017 Emily Fox

y

sq.ft.

p
ri

ce
 (

$
)

x

2/1/2017

24

CSE 446: Machine Learning47

Parametric models of f(x)

©2017 Emily Fox

y

sq.ft.

p
ri

ce
 (

$
)

x

CSE 446: Machine Learning48

Parametric models of f(x)

©2017 Emily Fox

y

sq.ft.

p
ri

ce
 (

$
)

x

2/1/2017

25

CSE 446: Machine Learning49

f(x) is not really a polynomial

©2017 Emily Fox

y

sq.ft.

p
ri

ce
 (

$
)

x

CSE 446: Machine Learning50

What alternative do we have?

If we:
- Want to allow flexibility in f(x) having local structure

- Don’t want to infer “structural breaks”

What’s a simple option we have?
- Assuming we have plenty of data…

©2017 Emily Fox

2/1/2017

26

CSE 446: Machine Learning

Simplest approach:
Nearest neighbor regression

©2017 Emily Fox

CSE 446: Machine Learning52

Fit locally to each data point

Predicted value = “closest” yi

©2017 Emily Fox

Here, this is
the closest
datapoint

y

sq.ft.

p
ri

c
e

 ($
)

x

1 nearest neighbor
(1-NN)

regression

2/1/2017

27

CSE 446: Machine Learning53

What people do naturally…

Real estate agent assesses value by finding sale of
most similar house

©2017 Emily Fox

$ = ??? $ = 850k

CSE 446: Machine Learning54

1-NN regression more formally

Dataset of (,$) pairs: (x1,y1), (x2,y2),…,(xN,yN)

Query point: xq

1. Find “closest” xi in dataset

2. Predict

©2017 Emily Fox

Here, this is
the closest
datapoint

y

sq.ft.

p
ri

ce
 (

$
)

x

2/1/2017

28

CSE 446: Machine Learning55

Visualizing 1-NN in multiple dimensions

Voronoi tesselation (or diagram):
- Divide space into N regions, each

containing 1 datapoint

- Defined such that any x in region is
“closest” to region’s datapoint

©2017 Emily Fox

Don’t explicitly form!

CSE 446: Machine Learning56

Distance metrics: Defining notion of “closest”

In 1D, just Euclidean distance:

distance(xj,xq) = |xj-xq|

In multiple dimensions:
- can define many interesting distance functions

- most straightforwardly, might want to weight different dimensions differently

©2017 Emily Fox

2/1/2017

29

CSE 446: Machine Learning57

Weighting housing inputs

Some inputs are more relevant than others

©2017 Emily Fox

bedrooms
bathrooms
sq.ft. living
sq.ft. lot
floors
year built
year renovated
waterfront

CSE 446: Machine Learning58

Scaled Euclidean distance

Formally, this is achieved via

distance(xj, xq) = a1(xj[1]-xq[1])2 + … + ad(xj[d]-xq[d])2

Other example distance metrics:
- Mahalanobis, rank-based, correlation-based, cosine similarity, Manhattan,

Hamming, …

©2017 Emily Fox

weight on each input
(defining relative importance)

2/1/2017

30

CSE 446: Machine Learning59

Different distance metrics lead to different
predictive surfaces

©2017 Emily Fox

Euclidean distance Manhattan distance

CSE 446: Machine Learning60

Can 1-NN be used for classification?

Yes!!

Just predict class of neighbor

©2017 Emily Fox

