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Linear classifiers – Which line is better?



Pick the one with the largest margin!

wx = i wi xi

γ

γ

γ

γ

Margin for point j:

Max Margin:



How many possible solutions?

Any other ways of writing the 
same dividing line?
• w.x + b = 0

• 2w.x + 2b = 0

• 1000w.x + 1000b = 0

• ….

• Any constant scaling has the same 
intersection with z=0 plane, so 
same dividing line!

Do we really want to max γ,w,w0?



Review: Normal to a plane

Key Terms

-- projection of xj onto w

-- unit vector normal to w



x-
x+

Final result: can maximize constrained

margin by minimizing ||w||2!!!

γ

Assume: x+ on positive line (y=1 

intercept), x- on negative (y=-1)



Max margin using canonical hyperplanes

The assumption of canonical 

hyperplanes (at +1 and -1) changes 

the objective and the constraints!

x-
x+

γ



Support vector machines (SVMs)

• Solve efficiently by quadratic 
programming (QP)
– Well-studied solution algorithms

– Not simple gradient ascent, but close

• Decision boundary defined by 
support vectors

Support Vectors:

• data points on the 

canonical lines

Non-support Vectors:

• everything else

• moving them will 

not change w
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What if the data is not linearly separable?

Add More Features!!!

Can use Kernels… (more on this later)

What about overfitting?



What if the data is still not linearly separable?

• First Idea: Jointly minimize 
and number of training mistakes
– How to tradeoff two criteria?

– Pick  C on development / cross validation

• Tradeoff #(mistakes) and 
– 0/1 loss

– Not QP anymore

– Also doesn’t distinguish near misses and 
really bad mistakes

– NP hard to find optimal solution!!!

+ C #(mistakes)



Slack variables – Hinge loss

For each data point:

• If margin ≥ 1, don’t care

• If margin < 1, pay linear penalty

+ C Σj ξj

- ξj , ξj≥0

Slack Penalty C > 0:

• C=∞  have to separate the data!

• C=0  ignore data entirely!

• Select on dev. set, etc.

ξ

ξ

ξ

ξ



Slack variables – Hinge loss

ξ

ξ

ξ

ξ

+ C Σj ξj

- ξj , ξj≥0

Hinge Loss

[x]+= max(x,0)

Regularization
Solving SVMs:

• Differentiate and set equal to zero!

• No closed form solution, but quadratic program (top) is concave

• Hinge loss is not differentiable, gradient ascent a little trickier…



Logistic Regression as Minimizing Loss

Logistic regression assumes:

And tries to maximize data likelihood, for Y={-1,+1}:

Equivalent to minimizing log loss:



SVMs vs Regularized Logistic Regression

SVM Objective:

Logistic regression objective:

Tradeoff: same l2 regularization term, but different error term

[x]+= max(x,0)



Graphing Loss vs Margin
Logistic regression:

We want to smoothly approximate 0/1 loss! 

Hinge loss:

0-1 Loss:



What about multiple classes?



One against All

Learn 3 classifiers:

• + vs {0,-}, weights 

w+

• - vs {0,+}, weights w-

• 0 vs {+,-}, weights w0

Output for x:

y = argmaxi wix

w+

w-

Any problems?

Could we learn this 

dataset? 

w0
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Learn 1 classifier: Multiclass SVM

Simultaneously learn 

3 sets of weights:

• How do we 

guarantee the 

correct labels?

• Need new 

constraints!

For each class:

w+

w-

w0



Learn 1 classifier: Multiclass SVM

Also, can introduce slack variables, as before:

Now, can we learn it?





What you need to know
• Maximizing margin

• Derivation of SVM formulation

• Slack variables and hinge loss

• Tackling multiple class

– One against All

– Multiclass SVMs


