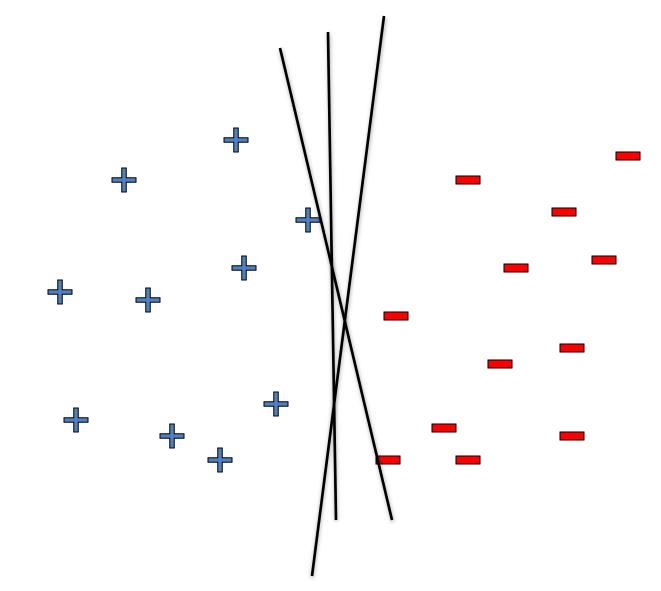
CSE446: SVMs Spring 2017

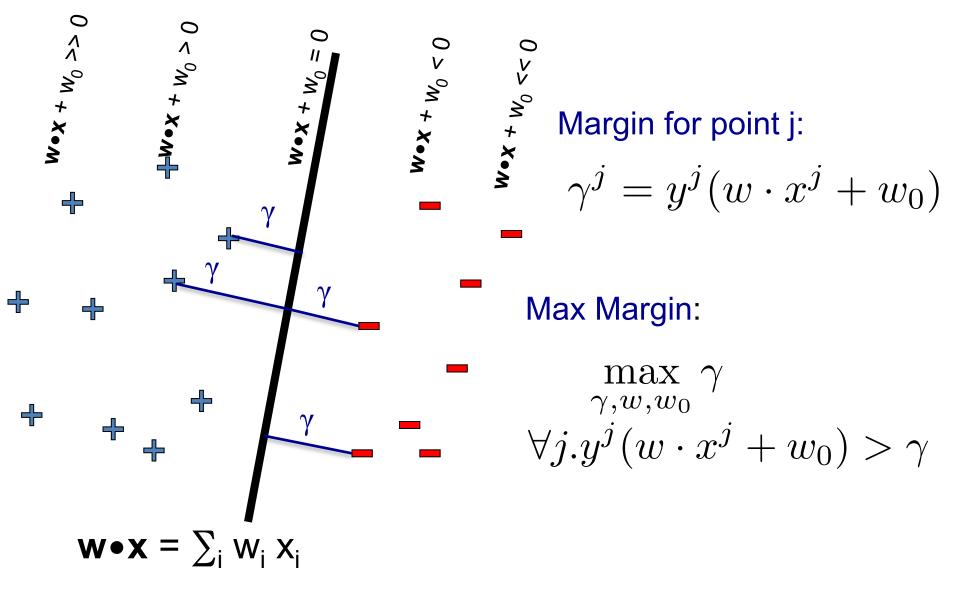
Ali Farhadi

Slides adapted from Carlos Guestrin, and Luke Zettelmoyer

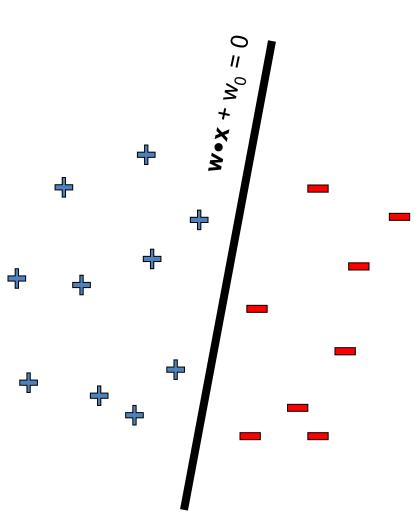
Linear classifiers - Which line is better?



Pick the one with the largest margin!



How many possible solutions?



$$\max_{\substack{\gamma, w, w_0}} \gamma$$

$$\forall j. y^j (w \cdot x^j + w_0) > \gamma$$

Any other ways of writing the same dividing line?

•
$$2w.x + 2b = 0$$

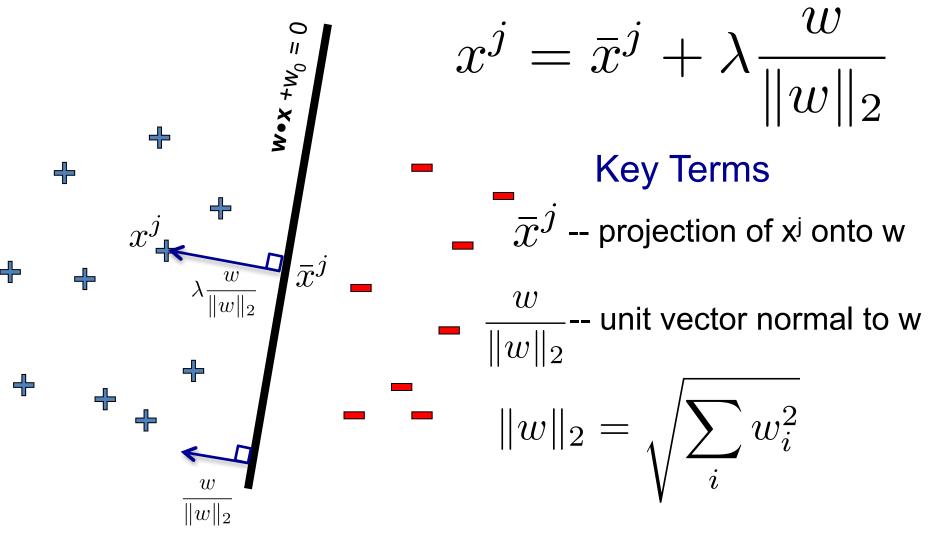
• 1000w.x + 1000b = 0

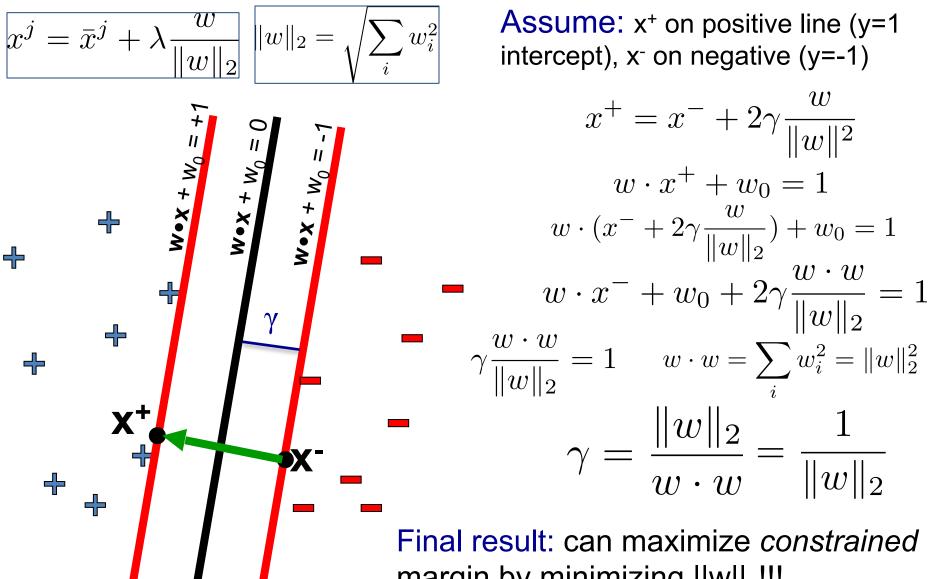
••••

 Any constant scaling has the same intersection with z=0 plane, so same dividing line!

Do we really want to max $_{\gamma,w,w0}$?

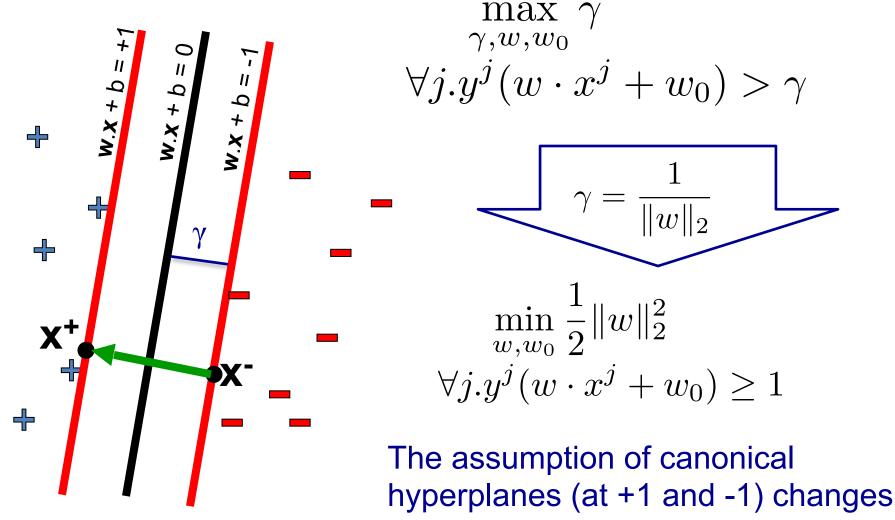
Review: Normal to a plane





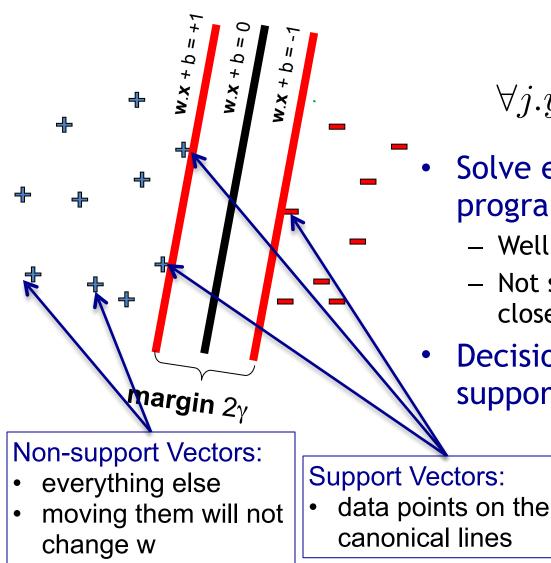
margin by minimizing $||w||_2!!!$

Max margin using canonical hyperplanes



the objective and the constraints!

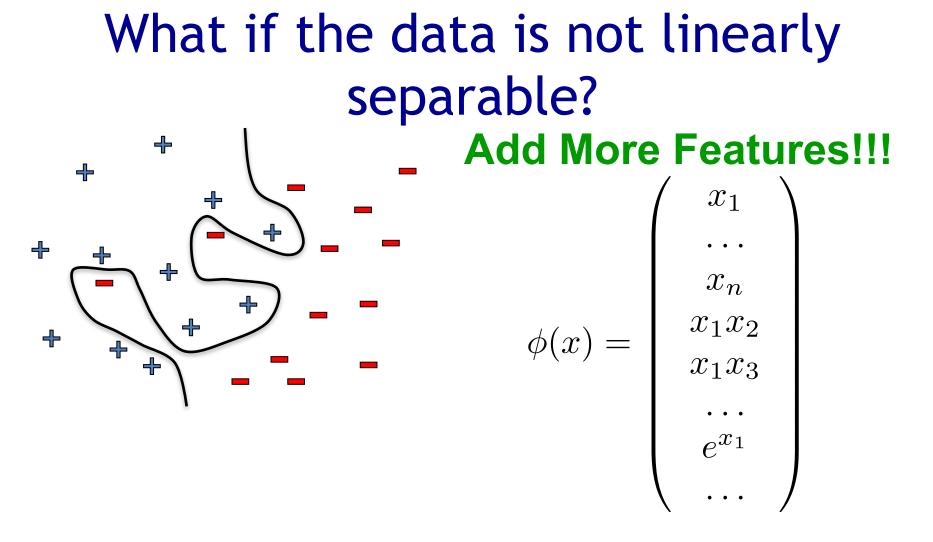
Support vector machines (SVMs)



$$\min_{\substack{w,w_0}} \frac{1}{2} \|w\|_2^2$$

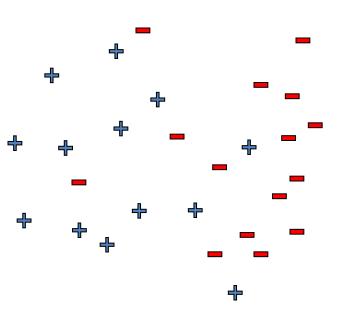
$$\forall j. y^j (w \cdot x^j + w_0) \ge 1$$

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
 - Not simple gradient ascent, but close
- Decision boundary defined by support vectors



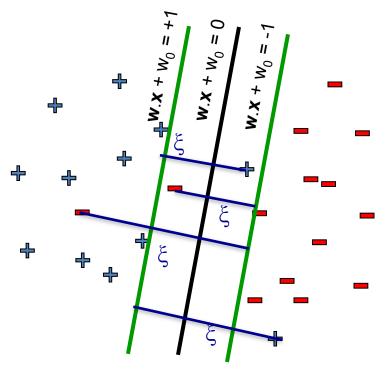
Can use Kernels... (more on this later) What about overfitting?

What if the data is still not linearly separable?



- parable? $\min_{w,w_0} \frac{1}{2} \|w\|_2^2 + C \text{ #(mistakes)}$ $\forall j.y^j (w \cdot x^j + w_0) \ge 1$
- First Idea: Jointly minimize ||²/₂ and number of training mistakes
 - How to tradeoff two criteria?
 - Pick C on development / $\mathrm{cross}_w\|_2^2$ validation
- Tradeoff #(mistakes) and
 - 0/1 loss
 - Not QP anymore
 - Also doesn't distinguish near misses and really bad mistakes
 - NP hard to find optimal solution!!!

Slack variables - Hinge loss



For each data point:

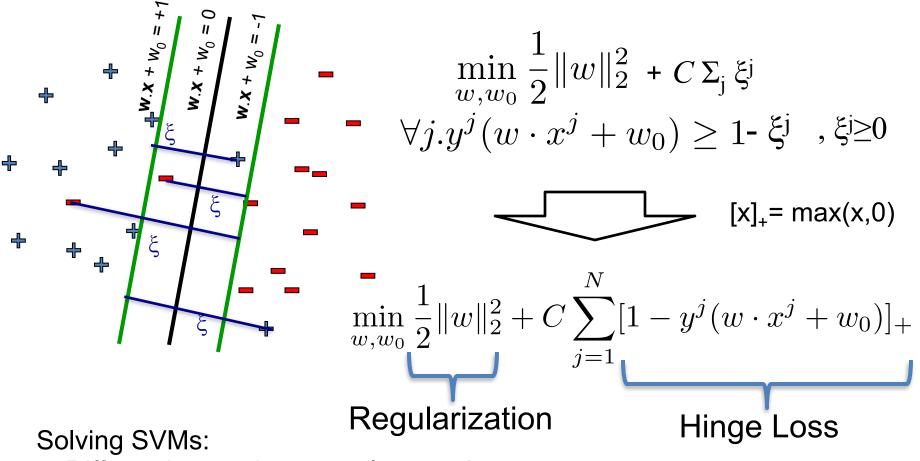
- If margin \geq 1, don't care
- If margin < 1, pay linear penalty

$$\min_{\substack{w,w_0}} \frac{1}{2} \|w\|_2^2 + C \Sigma_j \xi^j \\ \forall j.y^j (w \cdot x^j + w_0) \ge 1 \text{-} \xi^j \quad \text{, } \xi^j \ge 0$$

Slack Penalty C > 0:

- $C=\infty \rightarrow$ have to separate the data!
- $C=0 \rightarrow$ ignore data entirely!
- Select on dev. set, etc.

Slack variables - Hinge loss



- Differentiate and set equal to zero!
- No closed form solution, but quadratic program (top) is concave
- Hinge loss is not differentiable, gradient ascent a little trickier...

Logistic Regression as Minimizing Loss Logistic regression assumes: $f(x) = w_0 + \sum_i w_i x_i$ $P(Y = 1|X = x) = \frac{\exp(f(x))}{1 + \exp(f(x))}$

And tries to maximize data likelihood, for Y={-1,+1}:

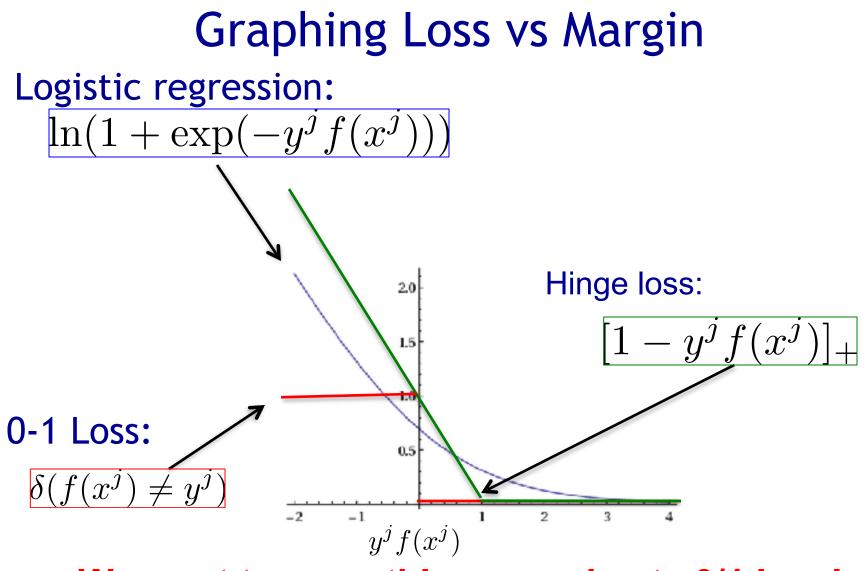
$$P(y^{i}|x^{i}) = \frac{1}{1 + \exp(-y^{i}f(x^{i}))} \quad \ln P(\mathcal{D}_{Y} \mid \mathcal{D}_{X}, \mathbf{w}) = \sum_{j=1}^{N} \ln P(y^{j} \mid \mathbf{x}^{j}, \mathbf{w})$$
$$= -\sum_{i=1}^{N} \ln(1 + \exp(-y^{i}f(x^{i})))$$
Equivalent to minimizing log loss:

$$\sum_{i=1}^{N} \ln(1 + \exp(-y^{i} f(x^{i})))$$

SVMs vs Regularized Logistic Regression

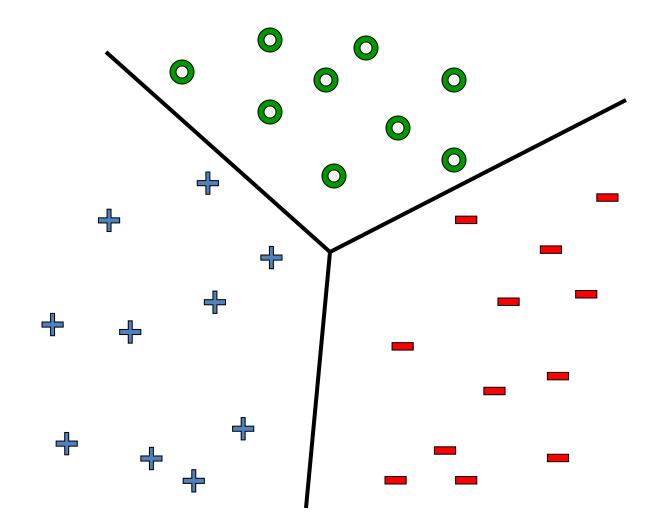
$$f(x) = w_0 + \sum_i w_i x_i$$
arg min $\frac{1}{2} ||\mathbf{w}||_2^2 + C \sum_{j=1}^N [1 - y^j f(x^j)]_+$
[x]_+= max(x,0)
Logistic regression objective:
arg min $\lambda ||\mathbf{w}||_2^2 + \sum_{j=1}^N \ln(1 + \exp(-y^j f(x^j)))$
Tradeoff: same l₂ regularization term, but different

error term

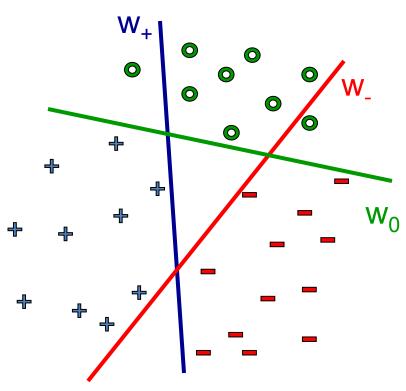


We want to smoothly approximate 0/1 loss!

What about multiple classes?



One against All



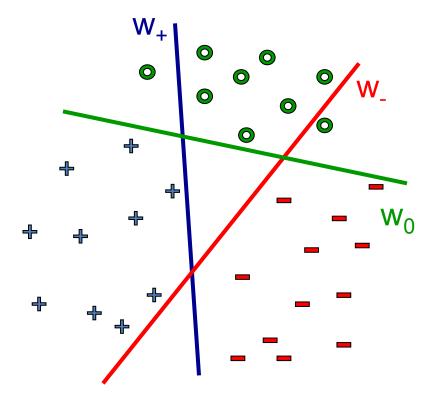
Learn 3 classifiers:

- + vs {0,-}, weights w₊
- vs {0,+}, weights w_
- 0 vs {+,-}, weights w₀
 Output for x:

Any problems? Could we learn this → dataset?

Learn 1 classifier: Multiclass SVM

- Simultaneously learn 3 sets of weights:
- How do we guarantee the correct labels?
- Need new constraints!

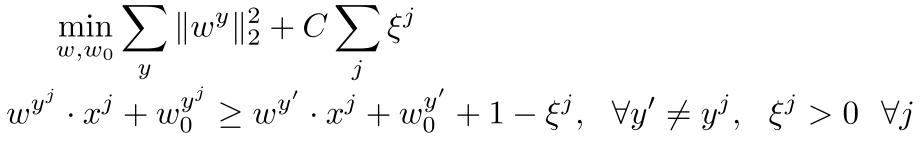


For each class:

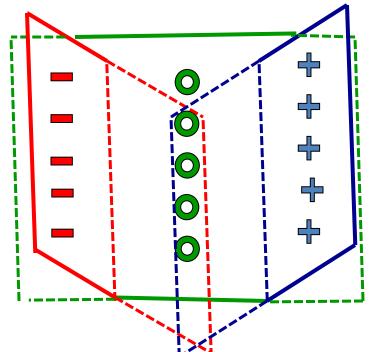
$$w^{y^{j}} \cdot x^{j} + w_{0}^{y^{j}} \ge w^{y'} \cdot x^{j} + w_{0}^{y'} + 1, \quad \forall y' \ne y^{j}, \quad \forall j$$

Learn 1 classifier: Multiclass SVM

Also, can introduce slack variables, as before:



Now, can we learn it?



What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs