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Linear classifiers - Which line is better?




Pick the one with the largest margin!
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How many possible solutions?

max -y
Y,W,Wwo

Vil (w- 2?4+ wg) >

Any other ways of writing the
same dividing line?

c WX+b=0

2w.x +2b =0

1000w.x + 1000b =0

Any constant scaling has the same
intersection with z=0 plane, so
same dividing line!

Do we really want to max , ,, o’




Review: Normal to a
plane

- Key Terms

:Z‘j -- projection of xi onto w

w .
-- unit vector normal to w
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(w|| = Zw.? Assume: x* on positive line (y=1
2 i intercept), x- on negative (y=-1)
xt =" + 27 w 5
|w]
w (27 +2y—) +wp = 1
]l
- w-x 4wy + 2 =1
= w - w w2
[wl2 XZ: 2
B v = Jwl2 1

Final result: can maximize constrained
margin by minimizing ||w||,!!!




Max margin using canonical hyperplanes
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The assumption of canonical
hyperplanes (at +1 and -1) changes
the objective and the constraints!




Support vector machines (SVMs)
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n _ * Solve efficiently by quadratic
o+ programming (QP)
— Well-studied solution algorithms
X + — Not simple gradient ascent, but
close
* Decision boundary defined by
argin 2, support vectors
Non-support Vectors:
- everything else Support Vectors:

« moving them will not ||* data points on the
change w canonical lines




What if the data is not linearly

separable?
_ Add More Features!!!
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Can use Kernels... (more on this later)
What about overfitting?



What if the data is still not linearly
separable?

min — Hng + C #(mistakes)
w,wo

.

= Vi (w-a? 4+ wy) > 1

+ - . * First Idea: Jointly minimize||5
+ - - and number of training

- - mistakes

+ % — How to tradeoff two criteria?

= = — Pick C on development / CrOTFwHQ
+ validation -

* Tradeoff #(mistakes) and
— 0/1 loss
— Not QP anymore

— Also doesn’t distinguish near misses
and really bad mistakes

— NP hard to find optimal solution!!!



Slack variables - Hinge loss
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Slack Penalty C > 0:

 (C=0w > have to separate the
data!

« (=0 - ighore data entirely!
« Select on dev. set, etc.

For each data point:
 |If margin > 1, don’t care
« |f margin < 1, pay linear penalty



Slack variables - Hinge loss
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Regularization Hinge Loss

Solving SVMs:
 Differentiate and set equal to zero!

* No closed form solution, but quadratic program (top) is concave
« Hinge loss is not differentiable, gradient ascent a little trickier...



Logistic Regression as Minimizing Loss

Logistic regression assumes: f(x) = wo + Z Wil
exp(f()) "

~ 1+exp(f(z))

And tries to maximize data likelihood, for Y={-1,+1}:
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1+ exp(—y' f(z?))
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N
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Equivalent to minimizing (og loss: =1

Zln(l +exp(—y' f(2"))



SVMs vs Regularized Logistic Regression

SVM Objective:
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Logistic regression objective:
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f(z) = wo + szﬂiz

.= max(x,0)
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Tradeoff: same |, regularization term, but different

error term



Graphing Loss vs Margin
Logistic regression:

In(1 + exp(—y’ f(z7)))

Hinge loss:

11—y’ f(a?)]4

We want to smoothly approximate 0/1 loss!



What about multiple classes?




One against All

Learn 3 classifiers:
« +vs{0,-}, weights w,

« -vs{0,+}, weights w_
e 0vs {+,-}, weights w,
Output for x:

y = argmax; w;eX

Any problems?
Could we learn this =
dataset?
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Learn 1 classifier: Multiclass SVM

Simultaneously learn 3

sets of weights:

« How do we
guarantee the
correct labels?

 Need new
constraints!

For each class:
wY’ - 1) —|—ng > wY - gd —I—wg/ +1, Yy #4¢7, Vj



Learn 1 classifier: Multiclass SVM
Also, can introduce slack variables, as before:
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What you need to know

Maximizing margin
Derivation of SVM formulation
Slack variables and hinge loss

Tackling multiple class
— One against All
— Multiclass SVMs



